Data-Driven Discovery of Anchor Points for PDC Content

Matthew McQuaigue1, \textbf{Erik Saule}1, Kalpathi Subramanian1, Jamie Payton2

esaule@uncc.edu

1UNC Charlotte, 2Temple University

EduHPC 2023
Towards HPC in early CS

Improving PDC education in undergrad education

- We have provided curriculum guidelines for PDC
- We have inspired ACM/IEEE CS guidelines.
- We train instructors
- We have produced Peachy assignments

We have a matching problem

- We have people who may want to teach PDC in early CS
- We have people with PDC expertise.
- Yet we are running into early CS instructors who don’t know what to teach
- And PDC experts who don’t know how to help
The core problem

Not every “CS1” lecture/assignment will fit in every “CS1” class

▶ Instructors have a lack of understanding of how to find materials that work for them.
▶ PDC experts have have a lack of understanding of how to develop materials that will integrate well.
▶ We need to understand how CS is being taught to both find materials that work and develop PDC content with a target of where it could be adopted.
Curriculum Guidelines

Computer Science Curricula 2013

Curriculum Guidelines for Undergraduate Degree Programs in Computer Science

December 20, 2013

The Joint Task Force on Computing Curricula Association for Computing Machinery (ACM)
IEEE Computer Society

memory" across all higher-level topics --- in addition to the hours allocated to related topics such as "SPMD," "tasks and threads," and "synchronization." In contrast, the hours allocated to Algorithms topics represent our estimation of the effort required to achieve the desired level of understanding in this domain. These hours are not intended to be exact measures, but rather to provide a rough estimate of the effort needed to master the specific topics and concepts that are covered under the Algorithms umbrella. Many of the Algorithms topics cover key concepts and tools that will pervade the coverage of many disparate non-Algorithms topics --- the specific list of topics varying from institution to institution. The cumulative number of hours is therefore intended to be a rough estimate in isolation.

8.2 Architecture Topics

Table 1: Architecture Topics

<table>
<thead>
<tr>
<th>Topic</th>
<th>Learning Outcome</th>
<th>Where Covered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flynn's taxonomy, data vs. control parallelism, shared/distributed memory</td>
<td>Describe opportunities for multiple instruction issue and execution (different instructions on different data)</td>
<td>Systems</td>
</tr>
<tr>
<td>Data vs. control parallelism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superscalar (ILP)</td>
<td>Describe uses of SIMD/Vector (same operation on multiple data items), e.g., accelerating graphics for games.</td>
<td>Systems</td>
</tr>
<tr>
<td>SIMD/Vector (e.g., SSE, Cray)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipelines</td>
<td>Describe basic pipelining process (multiple instructions can execute at the same time), describe stages of instruction execution</td>
<td>Systems</td>
</tr>
<tr>
<td>● Single vs. multicycle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Data and control hazards</td>
<td>Understand how one pipe stage can depend on a result from another, or delayed branch resolution can start the wrong instructions in a branch.</td>
<td>Compilers</td>
</tr>
</tbody>
</table>

Analyze classes
Data collection

Workshops

- Conducted Workshops online during COVID
- Conducted 2 workshops summer 2023 to train instructors in analyzing their courses using CS Materials
- 31 courses
- About 1700 materials (lectures, assignments, quizzes, etc.) in CS Materials system

Dataset

- Retained 20 courses in total for analysis
- Courses were tagged with course type based on course names
Discovering Types of Courses

Non Negative Matrix Factorization

\[\text{Course} \times \text{Types} = \text{Tags} + e \]

By setting the number of types, you can investigate different clustering of courses.
Results and Conclusions

What we saw

- Confirmed that NNMF enables to recover the type of courses
- Identified 3 types of CS1 courses: Object Oriented, Imperative, Algorithmic Thinking
- Identified 3 types of Data Structure courses: Focus on interfaces and OOP, focus on application, cover combinatorial algorithms.

What it means for PDC in early CS courses

- Object Oriented CS1 may not be able to integrate loop-based parallelism, but may support promise style concurrency.
- Only Imperative CS1 talks about number representation, so representation based discussion of parallel reduction probably only makes sense there.
- OOP style Data structure probably can support thread safe DS discussions.
- Dependency extraction and PTG is probably easier in DS with combinatorial alg.
Thank You!

Learn more

- https://cs-materials.herokuapp.com
- Goncharow et al. CS-Materials: A system for classifying and analyzing pedagogical materials to improve adoption of parallel and distributed computing topics in early cs courses. JPDC 2021.
- Goncharow et al. Mapping materials to curriculum standards for design, alignment, audit, and search. SIGCSE 21.
- Goncharow et al. Classifying pedagogical material to improve adoption of parallel and distributed computing topics. EduPar 19.
- We will be running CS Materials workshops Summer 24.
- Contact us: esaule@uncc.edu

We are recruiting!
UNC Charlotte is recruiting: PhD Students, Faculty, Chaired Faculty.

Acknowledgement
This work was supported by grants from the NSF: OAC-1924057, CCF-1652442.