
Vistas in Advanced Computing
Amit Amritkar∗, Jerry Ebalunode†, Martin Huarte-Espinosa‡,

Peggy Lindner§, Pablo Guillén Rondón¶ and Andrea Prosperetti∗∗‖
Center for Advanced Computing and Data Science, University of Houston

Houston, TX
∗∗Also: Department of Mechanical Engineering, University of Houston

Email: ∗aramritk@central.uh.edu, †jebaluno@central.uh.edu, ‡mhuartee@central.uh.edu,
§plindner@central.uh.edu, ¶pgrondon@central.uh.edu, ‖aprosper@central.uh.edt

Abstract—This paper describes a summer program, “Vistas
in Advanced Computing,” in which rising sophomores were
instructed on major components of High Performance Comput-
ing including C programming, numerical methods, computer
architecture, parallel programming and other topics over a
period of eight weeks in the summer of 2017. Students spent 6-7
hours a day in a classroom attending lectures, studying, doing
homework and coding. The students were very positive about
the experience, an evaluation which is supported by the data
collected in the course of the program.

Index Terms—Undergradaute training, HPC, Scientific Com-
puting

I. INTRODUCTION

The ever-increasing role of computation in modern society
requires novel approaches to the teaching of many of the rele-
vant skills. This need is motivated not only by considerations
of efficiency but also – and perhaps more importantly – by the
need to expose STEM students to meaningful applications of
computers as early as possible in their career. Failure to make
their education feel more relevant for the world in which they
live runs the risk of causing many to abandon the field, which
is a negative outcome for society and for their personal life
trajectories as well. While nearly 40 percent of the students
entering 4-year post-secondary institutions indicate a plan to
major in STEM fields, about half of them fail to achieve this
goal (Malcom & Feder, 2016). Certainly many factors lead
to this outcome, but the distance between what students are
taught in their introductory math and science classes and what
they perceive as scientific and technological problems relevant
to the world that surrounds them may be large enough to
induce a sort of disaffection toward their chosen field.

In this paper we describe an experiment in which we have
spent 8 weeks in the summer of 2017 teaching 9 rising
sophomores advanced computing, numerical methods, com-
puter architecture and parallel computing, with exposure to
other topics such data mining, machine learning and molecular
dynamics. Given the bredth of topics it was impossible to go
to much depth in any of them, which was the motivation to
title the program “Vistas in Advanced Computing.” Our plan
is to continue to involve this cadre of students in research
projects in the summer of 2018 and to find suitable internships
for them for summer of 2019. We chose to hold the program
during the summer months to avoid lengthening the time to

graduation, which has become a matter of serious concern in
the past two decades (see e.g. Bound et al., 2010; Yue & Fu,
2017), catching the attention of policy makers and educators
as well as the general public.

Our program differed in two significant ways from typical
semester-long courses in HPC. In the first place, our students
had just completed their freshman year and had, therefore, a
much more limited background than the typical audience of
such courses. As a matter of fact, we believe that demon-
strating that it is possible to make the material accessible to
students so early in their career is one of the intersting results
of our experiment. Secondly, our program encompassed an
array of ideas and skills broader than what is usually offered
in HPC courses. Several national labs offer HPC bootcamps,
typically running over a single week and, therefore, much
shorter than our program and mostly directed, again, to a more
mature audience.

Our students spent about 7 hours a day in a classroom
setting, part of the time attending lectures given by us and
part of the time studying, solving homework problems and
coding. All had completed the standard Calculus sequence and
introductory courses in Physics and Chemistry, but they had
not taken courses in differential equations or linear algebra
yet. It should be stressed that, while these students were all
from honors classes in engineering, mathematics, physics and
computer science with a GPA of 3.6, we made no effort to
identify particularly gifted subjects for our experiment. For
reasons of time we were only able to advertise the program
to a limited extent and we accepted the students who applied.
Our only screening was at the high end, rejecting an applicant
who was too advanced to be a good fit for our program.

We are very happy with the results of this experiment.
Students were taught material that undergraduates would en-
counter in the course of their normal studies only much
later, if ever. Their response was unanimously enthusiastic
and led some to recalibrate their career plans, with a stronger
orientation toward research. Additionally, mathematics came
to life for them in a way that they had never experienced.
On the basis of this experience, we feel that a focus on
computation in the very early years of the college STEM
education may also be beneficial in fostering and motivating
the learning of mathematics, which is a notorious sore point
in the US education. It is well known that the United States

is a country with a larger proportion of low performers in
mathematics than the OECD average, a situation that has not
improved since at least 2003 (PISA, 2016).

The purpose of this paper is to describe the structure of our
program, the topics covered and to present an assessment of
its outcomes.

II. ADVERTISEMENT AND RETENTION

As already noted, due to reasons of time we were unable
to broadly advertise the program. One of us simply asked
instructors of several honor Calculus and Physics classes for
a few minutes at the beginning of a class period and briefly
explained the program to the students, who were directed to
a web page for further information. While the number of
students we were able to reach in this way was limited, it must
be recognized that the program that we have developed is not
suitable for a significant expansion without a major increase
in resources. We were able to accommodate 9 students and,
for reasons that will become clear in the following, probably
twice as many represents the upper limit at which our program
can maintain its effectiveness. This is our target number for
the summer of 2018 when the same program will be offered
again.

Since many students work during the summer, we felt it was
necessary to offer a financial incentive to make participation
feasible for our students. Each one of them received a schol-
arship of $ 4000 for the 8 weeks of the program, supported
by in-house funds. Doubling the number of participants will
increase the cost and we plan to look for additional support
from philanthropic and governmental sources.

We were very happy to find that retention was not a problem
in the least. The students quickly developed a strong esprit de
corps, felt privileged to be part of the program and realized
the uniqueness of the experience they were offered.

III. OVERVIEW

The program was articulated in four main themes, described
in greater detail in the sections that follow:

1) The C programming language;
2) Basic numerical methods for ordinary and partial differ-

ential equations and linear algebraic systems;
3) Computer architecture;
4) Parallel programming with OpenMP and MPI.

Two other topics, machine learning and molecular dynamics,
were covered more briefly. In addition, there were weekly
seminars addressing such topics as chaotic phenomena, plasma
ejection from stars, the Leidenfrost phenomenon and how to
make the most from attending a conference. All the authors
of this paper shared the development and presentation of the
material and a TA was available to help students with their
assignments.

The last week of the program was devoted to individual
mini-projects consisting of the study of a specific topic, the
programming of the relevant mathematical model, the analysis
of typical results, the presentation of the work to the class and
the preparation of a written report. Students were encouraged

to drive the project in the direction they found most interesting,
a freedom which helped them develop their understanding of
the subject. The topics were in the following areas:

1) Traffic flow;
2) Molecular dynamics;
3) Lotka-Volterra model of two-species dynamics of bio-

logical systems;
4) The Hodgkin-Huxley model of action potentials in neu-

rons;
5) A simple model of star formation;
6) The Burgers equation.
Students were asked to organize their projects (codes, re-

ports, test cases) in different directories to convey to them the
concept of software packaging and redistribution. They were
also asked to describe the system on which they had executed
their projects to give them a sense of hardware influence on
the performance of their codes.

The plan for the second summer of the program (2018) for
the cohort of students who have completed the first summer
is to assign to each one more substantial research projects,
developed with the aid of colleagues in the UH Colleges of
Engineering and Natural Sciences and Mathematics, to be
carried out over the time span of one-two months. For the
third summer we will help the students to find internship in
UH laboratories and area companies.

In order not to lengthen time to graduation, we felt that
it was not appropriate to involve the students in intensive
activities during the regular fall and spring semesters of
the academic year. We plan to bring them together again
approximately once a month for lectures, conversation and
socials.

IV. THE C PROGRAMMING LANGUAGE

The first two weeks of the program were devoted to inten-
sive instruction on C programming. No student had had any
previous exposure to this language. After a short introduction
on the history and evolution of C and its relationship to other
existing languages, the course turned to basic programming:
the idea of the main function, user-defined functions, mem-
ory allocation, variable declarations and, eventually, control
instructions. Every morning students were shown YouTube
videos covering the material taught during the previous day
with the aim of reinforcing their knowledge, both by the
repeated exposure to the material and by hearing it from a
different perspective from that of the instructor. The class
then proceeded to cover the day’s new material and address
questions. During the afternoon, students were given a set of
about 10 problems and 1-1.5 hours to solve them. Next, the
instructor randomly selected students each student, in random
order, to explain to the class how they had solved the problems
and their reasoning in writing the code. A great deal of
discussion and positive feedback was encouraged. Students
very quickly seemed to develop a team spirit, with everyone
involved in helping the others.

By the beginning of the second week, students showed pro-
ficiency in reading programs, writing some simple ones and,

also, pointing out alternative algorithmic implementations.
Advanced topics, such as pointers, structs, data structures,
and I/O were then covered. Students were excited, confused,
and eventually satisfied with their new abilities to understand
programming paradigms, and being able to code some of these
very powerful features of the C language. These classes ended
with students choosing one of two final project options: make
a Sudoku solver, or a Morse Code translator. They worked in
teams of two, and were given 5 days to finish. All results were
timely and interesting.

Another component of the material taught to these students
dealt with Data Visualization. Fundamental concepts were
discussed with the intent of cultivating best practices. Since
most of the students were already familiar with MATLAB,
data visualization using MATLAB was covered first. Then
the coverage moved to the use of high-performance tools,
VISIT and PARAVIEW. The material was designed with STEM
applications in mind, making use of sample data relevant to
engineering, physics and medicine, all of which are topics of
interest in the Houston area job market. Amongst other exer-
cises, students learned how to visualize and analyze tumors
embedded in human brain CT scan, how to analyze turbulent
flow moving behind airplane wings, how to create animations
of vector fields from static data. They were shown how to
create high-quality plots, graphics and animations, worthy of
scientific publications or conference presentations. There was
a lot of discussion on how to utilize this kind of tools for other
computer applications as well.

V. FUNDAMENTALS OF NUMERICAL METHODS

Among the many possibilities in this area we decided to
focus on methods in the general area of scientific computing.
This choice was motivated by the desire to help students re-
alize the essential connection between the mathematics taught
in Calculus classes, the mathematical form of the natural
laws taught in Physics classes and the remarkable power of
computation in generating results beyond the elementary ones
to which they had been exposed. Lectures ran for about two
hours a day for two weeks. The topics covered were:

• Root finding;
• Numerical approximation of derivatives, low- and high-

accuracy formulae, truncation error;
• Methods for ordinary differential equations and sys-

tems: explicit and implicit first-order methods, predictor-
corrector methods, Runge-Kutta methods, adaptive inte-
gration;

• One-dimensional Laplace, Poisson and Helmholtz equa-
tions: Dirichlet and Neumann boundary conditions, ghost
nodes;

• Linear algebraic systems: the tri-diagonal algorithm, Ja-
cobi iterations, Gauss-Seidel iterations;

• The diffusion equation: explicit and implicit methods,
Crank-Nicolson method.

After each class the students spent the remaining 5-6 hours of
the day writing code to solve problems by the methods taught
in the lectures. They found the material challenging at first, but

quickly caught up with it, became intrigued by the applications
and were successful in the numerical implementations.

VI. COMPUTER ARCHITECTURE

In addition to the fundamentals of mathematics and coding,
it is imperative that students acquire some knowledge of the
computational hardware. By better understanding the process
by which their codes get executed, they are then able to
make them more efficient. This material was covered over
two weeks, in parallel with the numerical methods component,
mostly in the form of lectures and hands-on exercises. Student
progress was evaluated by means of homework assignments
and pop quizzes. The focus was on the following basic
concepts:

• Numbers and computers: bits/Bytes, reality of numbers,
precision/significance and errors;

• Computer hardware trends;
• Overview of hardware components in an actual node:

identify different components visually; identify hardware
configuration from command line;

• Code compilation and execution process and how it maps
onto the hardware;

• The Memory Hierarchy: Disk drives, RAM and Caches;
locality for CPU-memory gap and how to program for it;
cache analysis and writing cache friendly codes;

• Instruction level parallelism and vectorization.

VII. PARALLEL PROGRAMMING

After a brief review of parallel computer architectures
and characteristics of different network topologies, students
were led to conceptualize the idea of performance in parallel
applications by the introduction of parallel metrics. Based on
Flynn’s taxonomy for parallel computer architectures, various
parallel programming paradigms were introduced, focusing
mostly on Message Passing Interface (MPI) and shared mem-
ory programming (OpenMP) paradigms, along with a short
discussion about POSIX threads.

The course material was covered in one week with many
hands-on practical exercises that focused on the design and
analysis of parallel algorithms. In addition to daily homework,
the students had to write a response paper comparing two
journal articles that discussed the development of multi-core
processors Gepner & Kowalik (2006); Gepner et al. (2007).

For the MPI part the students were first introduced to dis-
tributed memory computer architectures and the general idea
of the message passing model using point-to-point operations
(blocking/non-blocking). We then covered collective opera-
tions and students started to work through simple examples
derived from scientific computing, including solving systems
of linear equations and matrix operations. We also touched
upon the topic of debugging parallel applications.

The OpenMP part involved writing parallel code by imple-
menting OpenMP directives. Topics covered included the fork
& join execution model, many-core processor computer archi-
tecture, data scoping, work-sharing, reductions, synchroniza-
tion, and use of OpenMP functions. Students modified several

sequential codes to run in parallel, benchmarked their per-
formance, identified performance bottlenecks for bandwidth-
starved applications running on NUMA platforms and imple-
mented work-arounds, such as first-touch memory allocation,
to improve the application performance.

VIII. ADDITIONAL TOPICS: MACHINE LEARNING,
MOLECULAR DYNAMICS AND OTHERS

In addition to the series of lectures covering the topics
described above, we felt that it was useful to give the students a
very cursory exposure to topics of great current importance and
also likely to pique their curiosity. For this purpose two days
were devoted to machine learning and molecular dynamics. In
keeping with the “hands on” philosophy of our program, for
both topics there were lectures for about half the time with the
rest of the time spent on exercises and homework problems.
Furthermore, we briefly covered a few topics falling under the
heading of “good computing practices.”

MACHINE LEARNING. The starting point was the concept that
computers can be programmed so as to learn. The students
were shown how to “talk” to a computer in a way that is
simple, yet powerful and, most importantly, in a way that
can be readily understood by it. The basics of data mining
and machine learning were outlined, discussing concepts like
linear regression, classification, model evaluation metrics, and
model selection. Students had access to a Linux cluster to
run several machine learning algorithms as implemented in
powerful packages such as SCIKIT-LEARN (Pedregosa et al.,
2011) and H2O. In this way they gained an understanding of
core concepts in machine learning and began to master the
ability to efficiently train and benchmark accurate predictive
models. The topics covered included

• Data mining, pattern recognition, and approaches to ex-
tracting features for classification tasks;

• Unsupervised and supervised learning;
• Introduction to hierarchical clustering;
• Splitting the available data for training and testing pur-

poses in machine learning;
• Implementing the SCIKIT-LEARN classifiers: logistic

regression, linear discriminant analysis, k-nearest neigh-
bors, support vector machine, evaluation of the accuracy
of the models;

• Introduction to deep learning with H20: designing archi-
tectures for specific tasks, and evaluating the accuracy of
the models.

After the theoretical exposition of each topic, students spent
some time running the algorithms and learning to fit and
evaluate models using the Python tools mentioned above,
with examples drawn from Neuroscience Guillén et al. (2011,
2012).

MOLECULAR DYNAMICS. The Vistas scholars were intro-
duced to the principles of molecular mechanics and molecular
dynamics as applied to biological systems. The theory behind
the MD method was briefly covered followed by a rapid

1

2

3

4

5

How studying advanced
computing helps people
address real world issues

Problem−solving
in general.

Understanding the
connections among scientific
disciplines through computing.

M
ea

n
(5

.0
 p

oi
nt

 s
ca

le
)

Fig. 1. Students’ gains in understanding

introduction to carrying out molecular dynamics on biological
molecules of interest such as proteins and enzymes using
the state-of-the-art Python programming OPENMM molecular
dynamics application toolkit. Students were able to quickly de-
velop their own custom MD simulation applications targeting
different ensembles, and to emulate experimental conditions
in a wet lab setting. Special attention was given to describing
the workflow from the point of getting the starting coordinates
from the protein data bank database, structure preparation, MD
simulation and analysis of the resulting trajectory. Several of
the students went further to use MD simulations to characterize
the binding energetics for protein-protein complexes involved
in cancer pathogenesis. These applications illustrated how the
general goal of developing new strategies for the design of
anti-cancer drug agents can be addressed by MD methods.

GOOD COMPUTING PRACTICES. Since the students were
mostly new to programming, it was desirable to arm them
with the tools necessary for success. Debugging is an activity
which is immensely helped by the use of correct tools. So
the students were taught the use of appropriate compiler flags
and GNU debugger (GDB/DDD). The use of the debugger
was illustrated in class with extensive hands-on exercises.
Some students did use these tools for their subsequent coding
assignments and projects.

Version control is also an important tool to organize and
manage documents and codes which is normally not covered
in computing courses. Our students were taught to carry
out their projects using git for version control. This also
allowed us to streamline the process of assignment submission
and evaluation by asking the students to use GITHUB or
BITBUCKET accounts.

IX. STUDENT EVALUATION

The various quizzes, problem sets and projects daily as-
signed by each instructor provided us with a way of continu-
ously evaluating the students’ understanding and progress and,
at the same time, of gauging the effectiveness of our approach
to teaching the various topics.

1

2

3

4

5

Confidence that you
can do this subject area

Enthusiasm
for the subject

Interest in or
planning to take

additional classes in this subject

M
ea

n
(5

.0
 p

oi
nt

 s
ca

le
)

Fig. 2. Students’ gains in attitude

At the end of the program we administered electronically the
Student Assessment of Learning Gains (SALG) survey (Sey-
mour et al., 2000) to carry out a systematic evaluation of
the students’ confidence and interest in scientific computing,
as well as of their perceptions about their summer’s learning
experience.

The understanding, confidence and enthusiasm towards sci-
entific computing showed the highest gains. The students
thought that the learning experience and classroom instruc-
tional environment helped their learning. They rated their
interactions with peers and instructors positively and also
reported that specific class activities, such as the hands-on
exercises and participation in discussions, were helpful.

A. Student interest

Figure 1 provides a break-down of student responses with
respect to their understanding of scientific computing. They
all reported that the program had significantly increased their
understanding of “the connection among scientific disciplines
through computing”. With one exception, they said that, even
though they already had an interest in scientific computing
before, the program had increased their “enthusiasm for the
subject” a “good” or “great” amount and planned to take
more scientific-computing-related courses in the future (figure
2). In answering an open-ended question, the vast majority
of the students affirmed that the program greatly increased
their personal interest in the field and they had changed
their attitudes towards the willingness to learn beyond the
requirements of their degree.

Most students expanded their answers noting that they had
gained a greater depth of knowledge about the topic. The vast
majority (8 out of 9) reported a significant increase in their
skills, especially for “using computers to address problems in
their field of study” (figure 3). Two thirds said that the program
had significantly increased (“good” or “great” gain) their
confidence in their ability to succeed in scientific computing,
while 3 reported only “moderate” gains.

1

2

3

4

5

Explaining my
project to people
outside my field.

Using computers
to address problems

related to my field of studies

Working effectively
with others

M
ea

n
(5

.0
 p

oi
nt

 s
ca

le
)

Fig. 3. Students’ gains in skills

1

2

3

4

5

How the class topics,
hands−on activities, and
assignments fit together

The instructional
approach taken in this class

The pace
of the class

M
ea

n
(5

.0
 p

oi
nt

 s
ca

le
)

Fig. 4. Students’ learning experience

B. Learning experience

Students rated the learning environment for the program
positively. The “learning experiences” scale measures the
efficacy of the general instructional approach and curriculum
throughout the program. The learning environment in each
part of the program was rated between “moderate help” (3.0)
and “great help” (5.0). They were generally satisfied with the
teaching strategies used throughout the program. For instance,
8 out of 9 found the “instructional approach taken in this
class” to be “moderate” to “great” help. An equal number felt
that their learning was enhanced by the way that the lectures,
hands-on practices, and assignments fit together. Figure 4
documents the answer means for the learning experience. The
lowest rating (mean 3.4) was given for the pace of the program.

X. CONCLUSIONS

At the beginning of this program we were uncertain about
the very possibility of conveying this kind of material in
an effective way to students with a limited background in
mathematics, hardly any in computer science, and a still
developing scientific maturity. We feared that we might be
asking too much from them, and that at least some might
grow frustrated and drop out of the program. We were also
apprehensive about the possibility that some might find the

material arid and boring and leave for that reason. Much to our
delight, these apprehensions proved unwarranted. Our students
became quickly and very deeply engaged in the program and
seemed to find it interesting and enjoyable. A few times they
found the pace too fast and they had some suggestions on
the order in which the topics were covered but, overall, they
had no substantial complaint. Machine learning and molecular
dynamics proved of great interest to them and they suggested
that the C programming instruction could be cut down to leave
room for exposure to Python.

Our conclusion is that the approach that we have taken can
be successful not only in growing the scientific workforce, but
also in helping undergraduates to gain a better understand-
ing and appreciation of mathematics and its applications to
science. Our students left the program highly motivated to
remain in their fields and to continue their education beyond
the somewhat limited horizon of a Bachelor’s degree. We are
particularly gratified by the fact that, on the basis on her partic-
ipation in the our program, one of our students was awarded an
undergraduate research assistantship in computational physics
for the Fall 2017 semester.

We realize that the experience gained in a single summer
with a small number of students has a somewhat limited value.
However, the success of the initiative motivates us to continue
it in the future gaining additional data and experience. We also
recognize that a program such as ours could not be offered to
large numbers of students not only because of the significant
resources that this expansion would require, but also because
it would probably not appeal to “average” students but only
to motivated ones. Thus, for example, the same approach
followed in a required course may not be as successful. On
the other hand, our experience shows that the program has a
major impact on the thinking and future plans of the students
that can be reached and this, in our view, makes the effort
very much worth while.

ACKNOWLEDGMENT

This project was supported by the Center for Advanced
Computing and Data Science (CACDS) of the University of
Houston.

REFERENCES

BOUND, J., LOVENHEIM, M. F. & TURNER, S. 2010 Why
have college completion rates declined? An analysis of
changing student preparation and collegiate resources. Am.
Econ. J.– Appl. Econ. 2, 129–157.

GEPNER, P., FRASER, D. L. & KOWALIK, M. F. 2007 Per-
formance evolution and power benefits of cluster system
utilizing quad-core and dual-core intel xeon processors. In
International Conference on Parallel Processing and Ap-
plied Mathematics, pp. 20–28. Springer Berlin Heidelberg.

GEPNER, P. & KOWALIK, M. F. 2006 Multi-core processors:
New way to achieve high system performance. In Parallel
Computing in Electrical Engineering, 2006. PAR ELEC
2006. International Symposium on, pp. 9–13. IEEE.

GUILLÉN, P., BARRERA, J., MARTÍNEZ DE PISÓN, F.,
ARGÁEZ, M. & VELÁZQUEZ, L. 2012 Data mining in
the process of localization and classification of subcorticals
structures. In EATIS Conference Proceedings. Valencia.

GUILLÉN, P., MARTÍNEZ DE PISÓN, F., SÁNCHEZ, R.,
ARGÁEZ, M. & VELÁZQUEZ, L. 2011 Characterization of
subcortical structures during deep brain stimulation utilizing
support vector machines. In 33rd Annual International
Conference of the IEEE.

MALCOM, S. & FEDER, M. 2016 Barriers and Opportunities
for 2-Year and 4-Year STEM Degrees. Washington DC:
National Academies Press.

PEDREGOSA, F., VAROQUAUX, G., GRAMFORT, A.,
MICHEL, V., THIRION, B., GRISEL, O., BLONDEL,
M., PRETTENHOFER, P., WEISS, R., DUBOURG, V.,
VANDERPLAS, J., PASSOS, A., COURNAPEAU, D.,
BRUCHER, M., PERROT, M. & DUCHESNAY, E. 2011
SCIKIT-LEARN: Machine learning in Python. J. Machine
Learn. Res 12, 2825–2830.

PISA 2016 Low Performing Students: Why They Fall Behind
and How To Help Them Succeed. Paris: OECD Publishing,
http://dx.doi.org/10.1787/9789264250246-en.

SEYMOUR, E., WIESE, D., HUNTER, A. & DAFFINRUD,
S. M. 2000 Creating a better mousetrap: On-line student
assessment of their learning gains. In National Meeting of
the American Chemical Society.

YUE, H. & FU, X. 2017 Rethinking graduation and time to
degree: A fresh perspective. Res. High Educ. 58, 184–213.

