
Using Embedded Xinu and the Raspberry Pi 3
to Teach Operating Systems

Patrick McGee, Rade Latinovich, Dennis Brylow

Marquette University

Outline
- Objectives

- Similar teaching tools

- Multicore support for Embedded Xinu

- Operating Systems Assignments

- Outcomes

- Future work

Introduction
- It is uncommon to teach OS in a hands-on way

- Logistics are seen as expensive and difficult to maintain

- Instead, OS courses are often taught using:

- Examinations of a large kernel such as Linux

- Limits student’s scope to a single component

- Virtualized platforms (e.g., Oracle’s VirtualBox)

- Hardware details are inherently abstracted from the student

Educational Operating Systems
- Bring real hardware interaction up front

- Embedded Xinu Operating System in courses:

- Operating Systems

- Hardware Systems

- Compilers

- Embedded Systems

- Used at other universities (XINU Labs) https://cse.buffalo.edu/~bina/cse3
21/fall2017/Lectures/XinuIntroOct
19.pptx

https://cse.buffalo.edu/~bina/cse321/fall2017/Lectures/XinuIntroOct19.pptx
https://cse.buffalo.edu/~bina/cse321/fall2017/Lectures/XinuIntroOct19.pptx
https://cse.buffalo.edu/~bina/cse321/fall2017/Lectures/XinuIntroOct19.pptx

Multicore Embedded Xinu
- Embedded Xinu descends from Xinu (1980s, Douglas Comer)

- Xinu originally supported CISC machines

- Embedded Xinu was designed for RISC machines:
- PowerPC, MIPS, Raspberry Pi

- Ported to Pi 3 B+ in 2017
- $35 USD

- ARMv8-A CPU running in 32-bit (ARMv7) mode

- Enabled 3 semesters of concurrency-oriented OS projects

Recommended Curricula
- ACM/IEEE CS 2013 recommends 15 hours of parallel undergrad education

- Major topics explored in an OS course:
- Concurrency
- Scheduling
- Memory management

- Parallel distributed concepts include:
- Atomicity & Race conditions
- Mutual exclusion
- Blocking and Non-blocking messaging

- Little prior work has focused on teaching parallel concepts in an OS course

https://www.acm.org/education/curricula-recommendations

Existing Educational OSes
- vmwOS, University of Maine

- Graduate-level OS Course
- Features in common with Xinu:

- Multicore support (including a scheduler)
- Blocking I/O
- Device drivers

- Difference: supports a 64-bit architecture

- University of Calgary’s bare-metal OS
- Undergraduate-level Computing Machinery course
- Students build an interactive video game written in ARM assembly language
- Marquette’s Hardware Systems course teaches ARM assembly

- From conditional branching to recursion using activation records

Other Related Work
- UNC Charlotte’s Parallel and Distributed Computing course

- Dedicated cluster runs student code
- Basic familiarity with C/C++ and UNIX toolchain
- Build a series of projects to increase level of abstraction available

- Pthreads
- MR-MPI library

- Focuses on a third-year course

- “Exploring Parallel Computing with OpenMP on the Raspberry Pi”
- SIGSCE ‘19
- First and second year undergraduates
- Shared memory parallelism using OpenMP, a standardized interface

Marquette Systems Lab Environment
- Dedicated pool of Raspberry Pi boards are remotely available on demand

Difficulties
- Expanding Embedded Xinu to support a multicore platform is challenging

- Multicore features should be carefully implemented
- Otherwise, Xinu’s design goal of minimalism will be stepped on
- Designed to be understood by by a mid-career undergraduate computing major

- Modern OSes do not face this tradeoff
- Their solutions do not scale down to fit Xinu’s design aesthetic

- Poor public documentation of modern processors compounds the difficulty
- The general ARM Cortex A-53 document is available, but not for the BCM2837B0 SoC

Multicore Additions
- Priority-based preemptive process scheduler

- 4 doubly-linked ready list priority queues

Multicore Additions (continued)
- Timer interrupts and preemption

- Timer interrupts need to occur on each of the four cores
- Therefore, each core must initialize its respective physical timer

- Coprocessor registers hold information about interrupt control

- Atomic operations
- Exclusive load and store operations provide synchronization among cores

- ldrex, strex
- _atomic_increment() , _atomic_decrement()

- Cache coherency and DMA
- DMA buffer space is flagged as uncacheable to protect USB transfers from stale values

Marquette’s OS Course
- 80 undergraduate students in various majors:

- Computer Science
- Computer Engineering
- Biocomputing

- Students work in small teams to build OS components
- Weekly, cumulative assignments

- 5 multicore assignments

- Stripped-down version of the kernel is given
- Few hundred lines of C and ARM code

Multicore Synchronization Primitives
- Introductory multicore concurrency

assignment
- Students enforce basic protection among the

four cores
- Following 2 warm-up C assignments and the

synchronous serial driver assignment

- Worst case: all cores are trying to access
the UART at the same time

- Students complete ARM routines to provide
synchronization

Non-preemptive Multicore Scheduling
- Students add a thread abstraction onto each core by:

- Building an assembly routine to switch process contexts
- Modifying the incomplete create() function to consider multicore processes
- Testing their implementations

- Students are required to examine the thread structure
- Particularly, understanding:

- The thread life cycle
- A new field, core_affinity , that describes the core running the thread
- For simplicity, we do not yet allow threads to migrate between cores once started
- In addition, it is not possible to kill a running thread from a different core

Preemptive Multicore Scheduler
- Students implement round-robin priority scheduling:

- Using 3 priority queues (representing low, medium, and high priority) per core
- The ready list is now a two dimensional queue

- Students must understand:
- Each core has its own timer (the underlying handlers are completed for them)
- If aging is enabled, a thread may be promoted to a higher priority queue

- This avoids starvation of a thread

- Testing:
- Students can test prioritization in isolation and then introduce cases for aging

Multicore Semaphores
- Asynchronous, interrupt-driven UART driver

- Challenge: semaphore variables should be safe from destructive updates by competing cores

- The high-level functions are similar to the synchronous driver, except:
- The given asynchronous implementation is only functional on a single core architecture

- The student:
- Develops the main functionality of the driver
- Uses atomic increment and decrement as synchronization primitives to resolve the broken

semaphores

Heap Memory on a Multicore Platform
- Focus switches to OS-level memory management

- A free list of available memory blocks can be accessed by any of the four
cores at once

- Race conditions must be protected against using spinlocks

- Students develop mutually-exclusive malloc() and free() memory
operations

Outcomes
- Students implemented these projects in teams of two

- Quantitative comparison is difficult, primarily because:
- Instructors avoid reuse of assignment variants
- The order of project topics had to be shifted to accommodate multicore needs

- Guarding the serial port is now necessary before writing the context switch

- Most well-received assignments:
- Multicore synchronization primitives
- Non-preemptive multicore scheduling
- Core-safe memory allocation

- More challenging assignments:
- Preemptive multicore scheduling (students’ latent bugs were seemingly exacerbated)
- Asynchronous device driver (complexity of managing interrupt-driven I/O alongside multicore)

Future Work
- Non-blocking concurrent data structures

- Primary interest due to avoidance of deadlocks
- Applied to the thread ready list queues and the memory free list
- Probably of more value in a graduate-level course

- Memory protection and virtual memory
- The virtual memory system is enabled on our port, but not for memory protection
- Each thread can have its own memory space
- With the foundational protections in place, concepts such as a user-space or process

migration would become more simple to implement

