
Spring 12: IEEE-TCPP Curriculum Implementation Status at Ohio University

David W. Juedes
School of Electrical Engineering and Computer Science

Ohio University
Athens, Ohio, U.S.A.

Email: juedes@ohio.edu

Frank Drews
School of Electrical Engineering and Computer Science

Ohio University
Athens, Ohio, U.S.A.

Email: drews@ohio.edu

I. I NTRODUCTION

This paper provides a status update on the implementation
of the adoption of the NSF/IEEE-TCPP Curricular Stan-
dards for Parallel and Distributed Computing [1] at Ohio
University. Our adoption of the NSF/IEEE-TCPP Curricular
standards began in the Winter and Spring quarters of 2011-
12, and has extended into the Fall and Spring of the 2012-
2013 School year. This implementation is on-going and
now involves a range of courses taught throughout the
Computer Science and Computer Engineering curricula. In
particular, our implementation involves four current required
courses: CS 24011(CS/2) Introduction to Computer Science
II , CS 36102(DS/A) Data Structures, CS 4000 Introduction
to Distributed, Parallel, and Web-Centric Computing, and
CS 44203(Systems) Operating Systems. These courses cover
a broad range of material from the curricular standards on
parallel and distributed computing.

This poster is organized as follows. Section 2 covers
the evaluation strategy taken in this implementation. In
particular, we discuss how we know whether each piece of
the implementation is successful, and we discuss how we
plan to determine whether we are placing the material in
the correct location. In sections 3, 4, 5, and 6, we discuss
the specific implementation status for each of the four
courses mentioned above. Finally, we provide some insight
into the placement of specific topics within the curricular
recommendations with an example from our implementation
experience.

II. EVALUATION PLAN

The implementation and evaluation strategy taken at Ohio
University models our current outcomes based assessment
strategy that we use for ABET accreditation purposes. We
have chosen certain performance indicators for each module
that can be repeated consistently across the curriculum to
determine whether the approaches that we are taking are
effective. In the case of the early adoption of the NSF/IEEE
TCPP curricular standards, we seek to determine whether the

1Formerly CS 240B/C
2Formerly CS 361
3Formerly CS 442

placement of certain topics in certain courses is appropriate.
As we will see in later sections, our performance indicators
provide a clear indication that, sometimes, certain material
may need to be repeated or assessed at multiple points in
the curriculum to ensure that students achieve desired levels
of competence.

As we discuss below, each topic is covered (roughly) in a
“module” that may consist of one of more hours of coverage
in lecture. The evaluation of each module involves four steps.
The first step involves presenting the module and assigning a
task for the students that matches the performance indicator.
Such a task might be a quiz or a programming assignment,
depending on the desired level of competence (K/C/A).
The second step involves reviewing the student results,
and based on a rubric, classifying student performance as
either “excellent,” “good,” “developing,” or “poor.” We use
a well-established goal that 70% of students achieve either
“excellent” or “good” on the performance indicator. If this
goal is not met, the performance indicator and assessment
tool are re-evaluated. The final two steps of this process are
the assessment of student and instructor perception regarding
the module.

III. I MPLEMENTATION STATUS IN CS/2: CS 2401

In the winter quarter of 2011-12, we introduced a module
into the CS/2 course (CS 240B) at Ohio University that cov-
ered a simplified RAM model of computing (using the GNU
GIMPLE approach), parallel thinking about computing via
the PRAM model, and an introduction to parallel algorithms
via a sorting example. The module also touched on divide
and conquer approaches and algorithm analysis.

The purpose of the module in CS/2 was to introduce
students to (i) machine models of computing, (ii) paral-
lelism, and (iii) algorithm analysis for both sequential and
parallel computation. The expectation was that students
would achieve the knowledge level on Bloom’s taxonomy
on the material that was covered, and that, likely, that the
material would be covered again later in the curriculum.

The performance indicator for this module was an on-
line quiz that tested students knowledge of the presented
material. Forty-eight students completed the assessment.
Unfortunately, only 50% of the students achieved the desired



result of “excellent” or “good.” The decision was made to
repeat this material (and the assessment) in a later course.

IV. I MPLEMENTATION IN DS/A

During the spring quarter of 2011-12, a week-long series
of lectures (four total hours) were designed for theData
Structures course that covered parallel performance, thread
creation, thread safety, cache coherence and false-sharing,
task scheduling, performance limitations, Amdahl’s law and
parallel programming. Two blackboard quizzes were created
to tests the students knowledge (K) of the material, and
a programming assignment that tested theirability to apply
their knowledge. The results of these assessments were
measured to see whether the presentation of the material
was effective.

Rating Total Percent
Excellent (≥ 90%) 15 42
Good (≥ 70%) 18 50
Developing (≥ 50%) 3 8
Poor (< 50 %) 0 0

Table I
THREAD CREATION (KNOWLEDGE) ASSESSMENT

Rating Total Percent
Excellent (≥ 90%) 14 39
Good (≥ 70%) 15 42
Developing (≥ 50%) 7 19
Poor (< 50 %) 0 0

Table II
PARALLEL PERFORMANCE(KNOWLEDGE) ASSESSMENT

As we can see in tables I and II above, students in this
course were able to demonstrate knowledge of the material
through relative strong performances in both assessment.
Their ability to apply the material (table III below) in the
programming assignment was not as successful since less
than 60% of the students scored in the excellent or good
range. This specific module/exercise will be re-examined
during the next iteration of this implementation.

Rating Total Percent
Excellent (≥ 90%) 12 37.5
Good (≥ 70%) 7 21.875
Developing (≥ 50%) 8 25
Poor (< 50 %) 5 15.625

Table III
PARALLEL PERFORMANCE(APPLICATION) ASSESSMENT

V. I MPLEMENTATION IN CS 4000

Starting in the spring semester of 2012-13, Ohio Uni-
versity began offering arequired course in parallel and

distributed computing: CS 4000 Introduction to Distributed,
Parallel, and Web-Centric Computing. This course uses the
text An Introduction to Parallel Programming [2] along with
extensive notes to provide students with a deep and practical
introduction to various aspect of parallel and distrubuted
computing. The modules and associated performance indi-
cators are currently under development for the course. At
present, the course has covered: parallel algorithms (parallel
prefix sums), parallel models of computation, parallel and
distributed programming (OpenMP, Pthreads, OpenMPI) and
related topics.

VI. I MPLEMENTATION STATUS IN CS 4420

During the winter quarter of 2011-12, and fall and spring
semesters of 2012-13, the course content in the CS 4420 has
been revised and updated to cover material from the curricu-
lar recommendations on parallel and distributed computing.
The course covers 2.5 hours of architecture topics, 2.75
hours of algorithms topics, 9.5 hours of programming topics,
and two hours of cross-cutting topics. In this course, stu-
dents were given an assignment involving a multi-threaded
programming assignment that involved finding bounding
boxes of characters in images. In this case, the results
were encouraging. 75% achieved a good or excellent result.
Unfortunately, the sample size (4) was small for this specific
offering of CS 442.

VII. R ESULTS

As a unique test case, we repeated the module that covered
parallel models of computation in both CS/2 (CS 240B)
and CS 4000, and we performed the same assessment. The
results of the assessment of performance on the online-quiz
is provided in Table IV.

CS 2 CS 4000
Rating Total Percent Total Percent
Excellent (≥ 90%) 2 4 7 36
Good (≥ 70%) 22 46 9 47
Developing (≥ 50%) 18 38 2 11
Poor (< 50 %) 6 13 1 5

Table IV
COMPARING EARLY VS . LATE RESULTS ONMODELS OFCOMPUTATION

Clearly, the students at the 4000-level are able to grasp
this material on parallel models of computation better than
at the 2000 level. This is, perhaps, a good choice for material
to be covered in more than one location in the curriculum.

REFERENCES

[1] S. K. Prasad et al. (2010) NSF/IEEE-TCPP curriculum
initiative on parallel and distributed computing — core
topics for undergraduates — preliminary version. [Online].
Available: http://www.cs.gsu.edu/ tcpp/curriculum/index.php

[2] P. Pacheco,An Introduction to Parallel Programming. Morgan
Kaufman, 2011.


