
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

Lecture-less Java-Threads Training in an Hour?

Prasun Dewan

Department of Computer Science

University of North Carolina

Chapel Hill, USA

dewan@cs.unc.edu

Abstract—Introducing concurrent execution, forking, joining,

synchronization, and load balancing of Java threads to trainees

allows them to (a) create arbitrary concurrent algorithms, and (b)

be exposed to the underpinnings of concurrency concepts.

However, it requires the sacrifice of some existing concepts in the

course in which such training is added. To keep this sacrifice low,

we ambitiously explored if such concepts can be effectively

introduced and tested in a single class period, which is

approximately an hour, without a live lecture. Students were

asked to learn the concurrency concepts by reading, running,

fixing, and testing an existing concurrent program, and taking a

quiz. They had varying knowledge of concurrency and Java

threads but had not implemented concurrent Java programs. Both

in-person and remote help were offered. They were allowed to

finish their work after class, within a week. The vast majority of

them who started on time finished the coding correctly and gave

satisfactory quiz answers in ninety minutes. This experience

suggests that such hands-on training can be usefully added to

courses for training students and instructors that provide no other

training in concurrency or training in declarative concepts. Our

key ideas can be applied to languages other than Java.

Keywords— fork, join, load balancing, synchronization, race

conditions, automatic testing, hands-on training, Java threads

I. INTRODUCTION

Because of its importance, researchers are actively pursuing
a variety of mechanisms for introducing parallel computing in
undergraduate CS courses. One issue raised by this research is
the kind of mechanisms used to implement concurrency –
declarative mechanisms such as OpenMP [1] or procedural
mechanisms such as the Java thread abstractions [2-5].

A declarative mechanism has the advantage that with little
amount of code, it is possible to implement a variety of useful
concurrent algorithms. The disadvantages are that it limits the
range of supported algorithms, and more importantly, abstracts
away the nature of a thread – an independent execution of a stack
of procedure calls. This abstraction is particularly detrimental in
a teaching training workshop [5], as the instructor would not be
able to explain to the curious students the underpinning of
concurrency concepts.

An alternative is to explore a hybrid approach in which both
kinds of mechanisms are taught [5]. The disadvantage of this
approach is the time required to cover the additional mechanism.
This is a problem for both student and teacher training. Student
training is often done by adding concurrency concepts to an
existing course, which means sacrificing some existing serial
concepts. Removing existing topics for adding one concurrency

mechanism is difficult enough; doing so for two mechanisms is
likely not practical. A similar problem occurs in a teacher-
training workshop, in which instructors are gathered for a
limited amount of time, which has to be devoted to both
technical concepts and organizational and evaluation issues.

Given this problem, it is attractive to explore techniques to
teach the basics of the procedural mechanisms in a time period
that is typically affordable in a student or instructor-training
course. To explore this idea, this work addresses the following
specific question: Is it possible to introduce and test concepts in
execution, forking, joining, synchronization, and load balancing
of Java threads in one class period (which is approximately an
hour) with TA help but without any lecture on this topic? If this
goal is met, then such training can be usefully added to courses
that provide no other training in concurrency or training in
declarative concepts. Even if the goal cannot be met in its purest
form, attempts to meet it can support weaker versions of the goal
wherein the hands-on exercise usefully supplements recorded
lectures, overview lectures, or even full lectures on the covered
topics.

We believe this goal is ambitious given that we are using the
class period for not only an introduction of five different
concurrency topics, but also an evaluation of what the trainees
learned. Therefore, we are not considering a shorter period such
as 15 minutes. In a student-training course, such a period can be
found, for instance, during a class period when a professor is
away for a conference but has TA help. In a teacher-training
course, such a period can be found, for instance, during a
working lunch in which TA help is available.

In this paper, we describe and evaluate a technique we have
developed to meet this goal and weaker forms of it. Section 2
describes previous techniques on which we build and identifies
the primary key ideas we use to extend this work. Section 3
identifies additional secondary key ideas that address issues
raised by our goal and the primary key ideas. Section 4
describes, in-depth, the hands-on exercise we have developed
based on these key ideas, and our experience using this exercise
in a class period when the instructor was away for a meeting.
Section 5 gives conclusions and future work

II. RELATED WORK AND PRIMARY KEY IDEAS

 The idea of lecture-less teaching [6] is not new, and has
involved the use of recorded videos, textbooks, and tutorials. We
have incorporated this general idea into the teaching of
concurrent programming and used hands-on learning as a
vehicle for implementing our approach. More important, we are

This work was funded in part by NSF award OAC 1924059.

.

considering, not a lecture-less course or module, but a single
session to achieve all of our learning objectives.

Hands-on training is the typical vehicle used for teaching
concurrent programming. However, previous work requires
multiple class periods and involves some accompanying
lectures, given just before or during the hands-on training
sessions [1]. We have extended this idea to provide pure hands-
on training, with no lectures, in one class period, which could be
during the class or lab meeting time.

Two forms of hands-on training are possible. In one, trainees
create new code from scratch [1]. In the other, they modify code
given to them [5, 7]. Because of our goals of lecture-less, one-
period training, we have adopted the second approach.

The code modification exercise has previously taken two
forms. (1) Students uncomment and comment various parts of
code [5, 7]. (2) Students extend the given code with new
functionality [5]. Our innovation here is a third approach in
which students fix bugs in the given code.

Another issue in code modification is how many different
problems are given to the students to meet the learning
objectives. Previous work involved many small problems [5, 7].
Given our goal of keeping the training session short, we chose
to give them the code for a single problem.

Concurrent programs can be classified into those that (a)
require concurrency to perform their task such as a program that
simulates the dining philosopher problem, or (b) use
concurrency to speed up a task, such as prime number detection,
that could also be performed sequentially. As we are addressing
HPC (high-performance computing), like most of the related
work in concurrency pedagogy, we chose (b) and support a fork-
join problem in which a dispatcher thread divides work among
multiple worker threads it forks, and then joins them to receive
their results.

Hands-on training has the potential to demonstrate the
execution of multiple threads, and associated problems, in the
user-interface, thus reducing the need for a more abstract lecture
to do so. One approach to demonstrating concurrency is to create
a graphical user interface in which multiple threads create
animations that appear to execute concurrently [2, 3, 8, 9]. The
second is to do so textually, in the console [5, 7], by showing
interleaving of thread outputs that trace intermediate steps and
final results. The first approach, typically, requires the use of a
non-standard library or language for creating the user-interface.
Moreover, HPC applications, in which concurrency is added to
improve performance and not change the user-interface, are
inconsistent with animations. On the other hand, the second
approach has the disadvantage that console text must be
manually mined by the trainee to identify concurrency. We use
the second approach but keep the console text small by making
the amount of work given to each worker thread small.

It is important that a trainee solution is not hardwired to
specific data. Like exercises in previous work [1, 5], our
problem makes the output a function of program arguments and
random numbers generated by the program.

An important issue is the evaluation of the trainees’ code.
There may be none (typically in teacher-training courses), a

manual evaluation, or automatic testing [5]. Automatic testing
reduces evaluation time, and is particularly important if the code
must be evaluated during the training session, as it reduces the
time for the training session. In addition, when it checks
functionality [5] rather than performance, it can serve as a
vehicle to help guide trainees’ work. Therefore, we use
automatic functionality testing.

III. SECONDARY KEY IDEAS

The section above has identified several existing and new
key ideas used in our work. In this section, we identify
secondary key ideas to implement our goals and the primary key
ideas identified above.

One issue specific to our idea of pure hands-on training is
how to impart the knowledge needed to use the concurrency
mechanisms. We leverage the fact that students are given
working code that uses each of the concurrency mechanisms
they are learning. We embed the code with comments describing
how the mechanisms work. In addition, we incorporate, in the
code, print calls that trace how these mechanisms work.

In Java, threads execute two kinds of procedures. The main
thread, created by the Java virtual machine, executes the main()

method. Other threads, forked by the main thread, execute a
run() method in a Java Runnable interface. Unlike previous
work in Java thread training [2-5], we explicitly bring out the
relationship between these two kinds of methods.

Another issue specific to our goals is how to make sure a
small amount of console text is used to demonstrate concurrent
execution and associated synchronization problems, which
requires the underlying system to either execute the threads
concurrently or switch the execution of threads on a single CPU
frequently. Since students run programs on their own computers,
they are not guaranteed concurrent execution. Moreover, a CPU
can execute small problems without doing any thread switching.
We address this problem by, again, leveraging the fact that they
are working on code given to them. In this code, we add calls to
force thread switching.

Thread switching, by itself, is not sufficient to demonstrate
synchronization problems as it also requires some unsafe shared
accesses to occur during problem execution. It is possible and
more efficient to create fork-join solutions that avoid such
sharing of global data by using reduction techniques in which
forked concurrent threads write to local data, which is read by
the dispatcher thread after it joins them. We deliberately deploy
the alternative approach in which the forked threads write to a
shared data structure. We choose a problem that is likely to result
in sharing even when worker threads perform a small amount of
work. Finally, to ensure unsafe access, our code simulates
register loads and stores in Java, and executes calls to trigger
thread switching between the loads and stores. Thus, we
deliberately include artificial code patterns in our code for
illustration purposes. We did not have time, however, to explain
how these patterns could be improved in a single class period.

It is typical for concurrency courses to include all of the code
in the main() procedure [7]. We, on the other hand, use the
separation of concerns software engineering principle, which
says that independent tasks should be divided into separate
classes and procedures. We create five classes: a (1) utility class,

which contains code the trainee is expected to use but not study
such as the code to process main arguments; (2) worker class,
which contains the Java run() method; (3) dispatcher class,
which contains methods to fork and join methods; (4) repository
class, which keeps the data shared among the worker and
dispatcher thread, and (5) main class, which contains only the
main() method. Each class performs a separate function and can
be replaced by another class that performs the same function.
More important, it can be understood on its own. This
decomposition is problem-independent and can form a design
pattern for Java fork-join problems, especially those used for
hands-on training.

 We put all of these classes in one Java file, for three reasons.
First, this approach allows easier command-line compilation as
a single file has to be compiled. Second, we can influence the
order in which these classes are browsed, assuming trainees read
them in the order in which they are placed in the file. Finally, a
trainee can more easily search for prints in a single file.

Division of code in a class into procedures is driven by the
principle that (a) each procedure with a bug should contain only
the context needed to find and fix the bug, (b) each independent
task in the fork-join model such as fork and join should be
carried out by a separate method, (c) each thread should execute
a stack of calls rather than a single call to illustrate it is
associated with an independent stack, and (d) there should be
multiple alternate ways of synchronizing methods in calls chains
to remove race conditions.

To ensure everyone learns through the exercise, we do
require TA support to help with it. To ensure that helped students
learn the underlying concepts, we ask quiz questions that test
this understanding. We exploit the fact that the output of our
code traces the underlying algorithm by asking in the quiz what
effect various modifications have on the output – both the ones
they made to correct defects and others they could have made.
This approach results in a new class of concurrency questions –
output-based - to determine trainees’ understanding of why code
written by them or given to them works or does not. These
questions, in turn, imply that the training period should, ideally,
give them time to do both the coding part and answer quiz
questions, when the code and output are still fresh in their heads.

IV. SUMMARY OF KEY IDEAS

We summarize below the primary and secondary key ideas
we motivated in the previous sections:

1. Provide lecture-less training in the following concepts:
concurrent execution, forking, joining, synchronizing,
and load balancing of threads.

2. Let the coding part of this training consist of fixing bugs
in a single program given to the trainees.

3. Let the program use concurrency to improve
performance rather than provide thread-based
functionality.

4. Implicitly demonstrate each of the concurrency
concepts and bugs through a small amount of console
output.

5. Provide tests, available during the exercise, for
incrementally checking the correctness of bug fixing,
and explicitly identifying symptoms of the bugs in the
output.

6. Provide in-line and overview comments to explain the
concepts needed to perform the tasks.

7. Demonstrate synchronization bugs in the output by
using an artificial coding style involving pushing
worker results to the dispatcher, simulation of register
load and stores, and thread switching between a load
and store.

8. Choose a problem that makes it likely that concurrent
unsafe writes will be made to shared data.

9. Provide help to identify and fix bugs, while ensuring
that output-based and other quiz questions check how
much the trainees understood about the fixes they were
helped with.

10. Use the separation of concerns principle to create the
following class decomposition: a main class, a
dispatcher class, a worker class, a shared-repository
class, and a utility class.

11. Use the separation of concerns principle in method
decomposition to ensure that: (a) each thread executes a
stack of calls rather than a single call, (b) call chains can
be used to identify alternate approaches for
synchronizing methods, and (c) a buggy method does
not contain any code that is irrelevant to its fix.

V. REALIZING KEY IDEAS IN EXERCISE

We have developed an exercise that realizes all of these key
ideas. The author gave this exercise to students in a class when
he was away for a meeting. Because of lack of space, we cannot
give all aspects of the exercise and its execution. Below, we first
describe the nature and composition of the class that performed
the exercise, and their concurrency background. We then
overview the specific goal of the program with which they
worked. Next, we focus on the various tasks given to the
trainees, which included both fixing code and answering quiz
questions. We present (a) the specifics of the tasks, (b) overall
statistics about how well the students completed them, (c)
example answers to quiz questions, and (d) the components of
the exercise that were designed to successively carry out the
task. Finally, we present students’ opinions about the exercise.

A. Nature of Class

The class was an upper-division course on programming
language concepts. Its prerequisites included courses on object-
oriented programming, computer organization, data structures,
and automata theory. Almost all students were seniors.

The class had both in-person and Zoom participants, with
about half the students attending in person. This was true also
the day the exercise was given. Before the exercise was given
to the students, the TA, and two students (who had taken a
distributed thread-based course from the author) did the coding
part of it. One of these two students and the TA were available
for in-person help. The other student was available for remote
help. No one asked for remote help.

Forty-two students were enrolled in the course when the
exercise was given. Forty students, and the TA, submitted the
result of their coding effort. Thirty-six students, and the TA,
submitted quiz answers.

When asked in an earlier class about how much they knew
concurrency, the ones who spoke, and the TA, said they knew
almost nothing, which motivated the exercise. One of the survey
questions asked quiz takers about their previous knowledge of
concurrency, and the five specific topics: concurrent execution,
forking, joining, synchronization, and load balancing of threads.
8% of the quiz takers had no background, 19% generally knew
about concurrency, 49% had seen the specific topics but not their
implementation, and 22% had seen implementations of the
concepts, but not in Java. None of the answers illustrated below
are from this 22%, who had more than a superficial knowledge
of the covered concepts.

All previous classes had live lectures, in which students’
class participation was evaluated based on how many questions
they answered posed through Zoom chats. They were told that
in the exercise-based class, the quiz grade would be worth
roughly one day’s Zoom class participation, and the coding part
about double the points allocated to a Hello World program they
wrote to get familiar with the testing and other infrastructures
used in the course. Thus, this exercise was designed to be a low-
stake, high-reward one. They were given a week to make final
submissions.

28 students simultaneously opened the assignment Google
Docs document during the class period (The author was
monitoring the number remotely). The rest, we assume, used
other deadlines to postpone this work. This document was
shared with them 15 minutes before class started. 23 students
submitted their final version of the tested code within about 90
minutes of when the 75-minute class started, and eleven of them
within 50 minutes. Nine of them submitted their final versions
of the quiz answers within about 90 minutes. Many more had
made their initial quiz submission within this period. However,
the author encouraged them to revisit a couple of questions,
including a survey question, that had not been interpreted
correctly by many. Had the submission deadline been stricter,
we believe the vast majority would have finished both the
coding and quiz tasks within 90 minutes, before the next class
that day started.

This was a good trainee sample to test this first-cut effort at
such an exercise as the class had advanced undergraduate
students, and the majority of them had not seen the specific
concepts covered, in theory or practice. This exercise was
intended for not only training students but also instructors, and
the seniors were in between the two groups in maturity.

B. Overview of Exercise

The assignment write-up and the commented program
formed the entire exercise. The functional goal of the program
given to them was to take as an argument an integer N, generate
an array of N random numbers, find the odd numbers in this
array, and print a list of the odd numbers as well as the total
number of odd numbers. The algorithmic goal was to use the
fork-join model to implement this functionality.

 The code given to students partly met these goals, and their
coding task was to fix it. We chose identification of odd numbers
rather than, say, the more compute-intensive task of finding
prime numbers, as the likelihood of a random number being odd
is high, which in turn, makes high the likelihood of concurrent
accesses to the data structure that keeps track of the results. The
assignment write-up explained the two program goals.

Two JUnit tests were written for the exercise, which were
identical except that they gave different arguments to the main()
method. Students could run them locally on their computer and
also on the Gradescope server. They had to make their final code
submission to Gradescope. The quiz was taken and submitted on
Gradescope.

With this background, we are now ready to describe their
tasks, which involved fixing bugs and answering quiz questions.

C. Forking Threads

We start with a quiz question, not because it was their first
task, but because it checks their understanding of the most
fundamental concept they needed to perform the other tasks –
concurrency and thread forking. The question:

Assume thread p executes the following code, where r is a
Runnable:

Thread t = new Thread(r);

r.run();

Explain why this code will make thread p execute r.run()

rather than thread t. If you are unsure why, execute this code
with the Runnable implemented for you, put a breakpoint on
run(), and see the stack. How would you change this code to
make thread t execute r.run()?

The following sample answer provides an expected
response: “The stack for the thread t has not been created
therefore the code will run on the stack for thread p. To make
the thread t execute r.run() we would need to call t.start() to start
the thread represented by t.”

8% of the quiz takers (3 students) skipped this question. 76%
answered it correctly. The mistakes were in suggesting, as the

fix (1) t.run() (11%), or (b) t.start() followed by

r.run() (5%). We believe the first mistake was caused by the
fact that “running” and “starting” a thread are synonymous terms
in English; the author has seen many students confuse the two,
which was the reason for this question. The second mistake was
probably caused by the students correctly thinking of thread
forking as a two-step process in which the: (1) thread first starts,
and (2) then the Runnable runs. They did not realize that the
thread start() call performs both functions. One student asked
a TA to explain the concept of concurrency and how it was
relevant to the exercise, and thus, this help may have contributed
to the answer to this question.

The exercise contained at least two components to answer
this questionThread starting was illustrated in the code given to
them, which would explain their success in answering the
second part of the question. For the first part, comments (Fig. 1)
described main() and run() as the root methods of stacks
created by Java and the programmer, respectively.

a) Comments identifying a thread as an independent stack

b) Comments explaining thread start

Figure 1. Comments explaining threads

D. Joining Threads

The students were told that the method in Fig. 2 was buggy
and asked to fix it. Three students needed help with
identification of the bug. In the words of the TA, he
“described/tried to get them to describe what was happening
with the loop (fork thread 1 -> join thread 1 -> fork thread 2,
etc.) and then asked them what they thought it should be doing.
They all replied with fork all -> join all, and were able to figure
out the problem and solution from there.”

Figure 2. Fork-join bug.

The traced output, shown in Fig. 3 had clues to identify and
fix the bug. To determine if the students could see these clues,
the following quiz question was given: How does the traced
output of the original buggy version of forkAndJoinThreads()

differ from that of the corrected one?

Some answers to the question correctly identified the
problem with the output; for example: “The thread outputs are
not intertwined. They appear sequentially instead: The later
thread begins after the former thread provides output.” Others
described the problem with the code rather than symptoms in the
output; for example: “The problem is that different threads in the
original codes run sequentially instead of concurrently.” Either
way, they understood the problem with the method. The tests
further helped them identify the problem, as illustrated by the
message shown in Fig. 4. The result was that everyone
successfully fixed the bug.

E. Load Balancing

To introduce the load-balancing bug, we created two
methods, shown in Fig 5 to allocate the number of random
numbers each thread would process. Students were told that the
bug was in the second method, fairThreadRemainderSize(),
which was called by the first method, threadProblemSize().

This problem caused the most coding difficulties, perhaps
because of the artificial division of work allocation into two
methods to create the bug. Each TA fielded questions from four
students, and one student needed help twice. One student did not
realize two methods were involved in the computation and they
needed to use the value of the aThreadIndex argument. Based
on hints given to them, most of them realized that the return
value should be between 0 and 1, and then proceeded to fix the
solution. All but one of the students passed both tests for this
bug. Recall that these tests generate different number of random
numbers. One person passed only one test, probably because of
hardwired return values for one of these tests.

Figure 3. Output identifying fork-join and load-balancing bugs

Figure 4. Test error message identifying fork-join bug

Except for one student, all of the helped students had made
at least some attempt at a solution when they asked for help,
indicating that they had likely identified the bug. As with the
previous problem, both the output and test results indicated the
issue. In Fig. 3, line 3 shows that Thread 13 was allocated
sequence 0-3, and line 9 shows that Thread 14 was allocated
sequence 3-4. Other lines, not included here, indicate that all
other threads were allocated one element. Test output, shown in
Fig. 6, explicitly indicates the problem and implies that the
problematic method should return a value between 0 and 1. This
hint could have been explicitly given, but since we had TA help
available, we decided students would learn more if they figured
this out themselves. The vast majority did.

In general, a thread is an independent unit of steps, coded in

its root method. The main() method is always at the root of

the thread's stack, and thus, is called the root method of the

thread. Other methods such as the dispatcher methods get

pushed on top of the stack when they are called and popped

when they return. A thread starts when its root method is called

and terminates when the root method ends. In between the start

and stop, a stack of calls can be serviced by a thread. This stack

grows and shrinks, as different methods are called. In this

example, for instance, some example stack snapshots are:
ConcurrentOddNumbers.main()

->OddNumnbersUtil.fillRandomNumbers

->OddNumbersUtil.generateRandomNumbers

ConcurrentOddNumbers.main()

->ConcurrentOddNumbers.fillOddNumbers()

The call t.start() starts the thread represented by t, that is,

creates a new stack, and executes the run() method of the

Runnable instance bound to t

private static void forkAndJoinThreads () {
 for (int aThreadIndex = 0;

 aThreadIndex < threads.length;
 aThreadIndex++) {

 forkThread(aThreadIndex);
 joinThread(aThreadIndex);
 }
}

1. Thread 1->Starting:Thread 13
2. Thread 1->Stopping execution until the following

thread terminates:Thread 13
3. Thread 13->run() called to start processing

subsequence:0-3
4. … // Thread 13 output
5. Thread 13->run() terminates to end processing of

subsequence:0-3
6. Thread 1->Resuming execution as the following

thread has terminated:Thread 13
7. Thread 1->Starting:Thread 14
8. Thread 1->Stopping execution until the following

thread terminates:Thread 14
9. Thread 14->run() called to start processing

subsequence 3-4
10. … // Thread 14 output
11. Thread 14->run() terminates to end processing of

subsequence:3-4
12. Thread 1->Resuming execution as the following

thread has terminated:Thread 14

Forked threads do not execute concurrently.
Between the first and last output of each forked
thread, there is no other thread output.

It is possible that some students did not run tests to determine
the problems; instead, they waited until they were satisfied that
their program was bug-free, and then ran the tests. Recall that
these tests could be run locally, as part of a library called
LocalChecks, or as part of the Gradescope server, into which the
library and other code was uploaded. Because of constraints of
the Gradescope server, some error messages produced by the
tests were suppressed on the server. One of the TAs’ mentioned
that: “1 student was not running the LocalChecks grader and was
instead attempting to directly run grading in Gradescope. This
was fine, but he was not getting any error messages, and so, he
could not figure out what was wrong with his code. I told him to
run LocalChecks, and that displayed a nice error message. After
that, he didn't have any more issues.” The test outputs seemed to
have helped at least this student. All error messages shown here
(Figures 4, 6, and 9) were produced by the LocalChecks library.

The following quiz question addressed load-balancing: How
does the traced output of the original buggy version of
fairThreadRemainderSize() differ from that of the corrected
one? All students demonstrated their understanding of the
problem, though many, like the answer below, did not explicitly
indicate how the output changed: “The original version placed
the entire remainder on the first thread causing it to take about
half of the load (in small sample size) while the other threads
only handled one index. The corrected version only had at most
a one index difference in the load of each thread.”

F. Synchronization

The synchronization mistake was in the method shown in
Fig. 7, which simulates a register-based increment to a shared
variable. In this case, students were told how to fix it – they
simply had to uncomment the synchronized keyword in the first
line and observe how it influenced the output. This led to one
student asking if that was all that was involved!

The intellectual exercise here was to answer three questions
on this change. The first: In what ways does the traced output of
the original unsynchronized version of
incrementTotalOddNumbers() differ from that of the corrected
synchronized one? Assume in both cases that
forkJoinAndThreads() has been corrected. Consider
differences in the output of both the final and intermediate
results - in particular, the values loaded and stored.

Some answers (27%) explained both the change in final and
intermediate values. The following is an example: “In the
original unsynchronized version, the traced output would likely
showcase inconsistencies and race conditions, where multiple
threads may load the same initial value of
totalnumberoddnumbers, leading to incorrect increments and
inaccurate intermediate and final results. However, after I
corrected the synchronization, it would ensure that the threads
access the method sequentially, preventing concurrent access
and modification, which would reflect in the traced output
showing consistent and correct final values”. The most common
answer (41%) explained only the change in final values, while
some (27%) explained what the problem and solution were,
without mentioning symptoms in the output. All answers
demonstrated an understanding of synchronization. One person
did not answer the question, and one flipped the two cases.

Figure 5. Load-balancing bug

Figure 6. Error message identifying load-balancing bug.

Figure 7. Synchronization bug and solution.

Fig. 8 contains the output trace showing the problem with
unsynchronized access. Between the loads and stores are elided
outputs for thread starts and other events, which may have been

/**
 * This method determines how many elements of the
 * input list, whose size is, aProblemSize, will be
 * processed by the thread whose index in the
 * thread array is aThreadIndex.
 */
private static int threadProblemSize(

int aThreadIndex, int aProblemSize) {
 // Following is the size if the problem can be
 // evenly divided among the threads
 int aMinimumProblemSize =

aProblemSize / NUM_THREADS;
 // This is the remaining work
 int aRemainder = aProblemSize % NUM_THREADS;
 return aMinimumProblemSize +
 // calculate out how much of the remaining
 // work is done by this thread
 fairThreadRemainderSize(
 aThreadIndex, aRemainder);
}
/**
 * The goal of this method, as its name suggests,
 * is to divide aRemainder items fairly among the
 * available threads, that is, the differences in
 * the sizes of the portions is as small as
 * possible. aRemainder is expected to be between
 * 0 and NUM_THREADS - 1;
 */
private static int fairThreadRemainderSize(
 int aThreadIndex, int aRemainder) {
 if (aThreadIndex == 0) {
 return aRemainder;
 } else {
 return 0;
 }
}

Imbalanced thread load: Max thread iterations(4)
- min thread iterations(1) = 3. It should be <= 1

// synchronized
static void incrementTotalOddNumbers() {
 int aRegister = totalNumberOddNumbers;
 // Simulate load memory to register
 printProperty("Loaded total number of odd
numbers", totalNumberOddNumbers);
 // Before the incremented register is saved to
 // memory, another concurrent thread may also load
 // the same value for totalNumberOddNumbers in its
 // local register variable.
 aRegister++; // increment register
 ThreadSupport.sleep(10);
 // The above call simulates a CPU switching
 // execution to another thread.
 totalNumberOddNumbers = aRegister; //save register
 printProperty("Saved total number of odd numbers",
totalNumberOddNumbers);
}

missed by some of the students who did not mention it. The test
result in Fig. 9 indicates a mistake in the final result.

The following question required an answer that could not be
determined directly by examining the output or test results:
Suppose we execute the initial buggy version of
forkJoinAndThreads(). Explain why making
incrementTotalNumbers() synchronized results in no
difference in the output. That is, under the condition above,
whether the method is synchronized or not has no influence on
the traced output. Feel free to examine the output under these
conditions to help understand why.

Figure 8. Output demonstrating synchronization bug.

Figure 9. Test message identifying synchronization bug.

86% of the students gave a completely correct answer. An

example: “Since each thread was running consecutively rather

than concurrently, the counter was only being accessed by one

thread at a time, which is the same as if

incrementTotalNumbers() was synchronized.” Three gave a

partly correct answer, and two gave incorrect answers. As

expected, this was a harder but answerable quiz question.

The following turned out to be the most difficult question,
answered correctly by only 46% of the students: The only caller
of the static addOddNumbers() method is the instance run()
method, and the only caller of incrementTotalNumbers() is the
static addOddNumbers(). Suppose addOddNumbers() is not
synchronized but run() is synchronized. Explain why in this
scenario it matters whether incrementTotalNumbers() is
synchronized or not. Look at the explanation of synchronized
methods in the comments above incrementTotalOddNumbers()

if you are not clear about the reason.

Example correct answer: “If run()were to be synchronized,
it would lock the instance, since run() is an instance method
and not a static method. This means that other threads in
unlocked instances can still execute run(), but since
incrementTotalNumbers() is not also synchronized, it does not
function in the desired way. Multiple instances would be
executing the run() method, which would eventually have a call
to incrementOddNumbers(), and without the synchronization,
the bugs discussed in Q3 would occur.”

The overview comments did explain that executing a
synchronized static and instance method locked the
synchronized class and instance methods respectively. We
believe that 54% of the answers did not explain this correctly
because there was no exercise experiment to illustrate this
difference, reinforcing the idea of hands-on training.

G. Survey on Exercise Impact

The “quiz” contained two post-exercise survey questions.

The first asked the importance of the new concepts they
learned through this exercise that they did not know earlier. The
responses were: 5% not important, 32% moderately important,
38% very important, and 24% so important that no one should
graduate without knowing them.

In their explanations, some seemed to giving the importance
of the topics rather than what they had learned. Therefore, the
author clarified the question in a forum post, and asked them to
edit their answers, if necessary. It is not clear if all who had this
confusion edited their answers. However, some were clear, as
illustrated by the following answer: “Moderately important - I've
known the concepts before, but I found it helpful to see how they
are implemented in code.”

 An interesting rationale for a tepid response was:
“Moderately important, so far throughout all the computer
courses I've taken, most of the assignments I've done don't
involve coding threads and runnables. I think the knowledge on
threads can be useful in regards to efficiency in running
programs.” An interesting rationale for an enthusiastic response:
“Because I have been asked about designing a concurrent
program during an interview. It is important in modern
industry.” Together, these responses motivate more exposure to
concurrency concepts in a wide range of CS courses. The overall
sentiment was very positive, most enthusiastically expressed by
the following explanation of a “very important” rating: “This
rocked, thanks.”

The second survey question asked them if, given a choice,
they preferred this exercise for these concepts or the kind of
interactive lecture with Zoom-based Q/A they had experienced
in this course in earlier classes. In this form of Q/A, the author
posed a question in Zoom chat, waited for the average student to
compose an answer, asked students to hit Enter, and then
discussed the answers.

 The responses were: 24%, lecture, 22% not sure, 14% little
difference, and 38% exercise. The reasons for preferring a
lecture included: It gives better explanations, serves better as an
introduction, is more visual, promotes more thinking (through
the Zoom Q/A), allows learning from peer responses, answers
important conceptual questions more, and does not require time
after class to finish the work for those who code at a slower pace.
Some of these responses implied such an exercise was effective
as long as it was a one-time occurrence, which is what it was
intended to be.

The reasons for preferring the exercise included: It is a more
active form of learning, provides more depth, is tougher, is more
self-paced, does not require the fast student to wait for the
average student to provide Zoom answers, does not require
quick public Zoom responses, and gives reproducible examples.

A reason given for the response of (a) “little difference” was
that the exercise was guided like a lecture and thus as effective,
and (b) “not sure” was the desire to see a hybrid model with a
video introduction to the exercise.

The responses to these two questions indicate that, overall,
the exercise was an attractive alternative when a professor is not
available for an in-person lecture, and, despite limitations
perceived by some, made at least a moderate impact on the
learning of those who had seen some of these concepts before
and those who had not.

Thread 14->Loaded total number of odd numbers:0
… //more output
Thread 13->Loaded total number of odd numbers:0
..// more output
Thread 13->Saved total number of odd numbers:1
..// more output
Thread 14->Saved total number of odd numbers:1

Computed total number of odd numbers 1 != expected total 3

VI. CONCLUSIONS AND FUTURE WORK

The main contribution of our work is to consider, in-depth,
the possibility of a lecture-less introduction, in an hour, to
imperative mechanisms for concurrent execution, forking,
synchronization, and load balancing of threads. Not all students
finished all the tasks in an hour, but many did. Students did get
all the help they needed within the hour, and were able to finish
the quiz questions on their own later. Finishing later is consistent
with the fact that in a university course, a student is expected to
work 3 hours outside class for each hour of class. The TA, who
had little knowledge of concurrency, took 15 minutes to read the
assignment write-up and get the code set up, 15 minutes to look
through all of the code and associated comments, 20 minutes to
fix the bugs, and 5 minutes to check the work and submit to
Gradescope. If the exercise is published ahead of time, then the
vast majority of trainees may have been able to finish both the
coding and quiz within an hour.

The fact that (a) all students submitted correct code, with
some requiring help, and (b) the vast majority of students
answered the quiz questions correctly, with some making
understandable mistakes, indicates that the covered concepts
were nontrivial and learnable through a pure hands-on exercise.

The design of a lesson for a live lecture can leave many
aspects to be resolved at lecture time, as a misstep can be
corrected during the lecture. The design of a pure hands-on
session does not have this luxury, even with TA support, as such
support provides 1-1 help, and thus, does not scale. In
comparison to papers on lecture design, this work addresses the
“devil in the details” more thoroughly, and thus provides a more
comprehensive description of its approach, parts of which could
be reused in several future endeavors. Its evaluation is equally
detailed, giving specific problems fielded by the TAs, the hints
given to students, and the mistakes they made in quiz questions,
to identify the issues that may need to be addressed by future
offerings of the exercise.

It would be useful to investigate the applicability of this
exercise in a variety of settings, including (a) teacher-training
workshops, (b) courses addressing OMP programming that are
taken by students with Java familiarity, and (c) courses on Java-
based object-oriented programming. Often a professor has to be
at a conference during lecture hours – this exercise is an
attractive alternative to a lecture given by a guest teacher. We
will be happy to share the assignment write-up, downloaded
code, local checks library, and the Gradescope autograder with
others interested in using this exercise.

It is even more attractive to consider variations of this
approach. An introductory YouTube lecture could introduce
Java threads, while still keeping the lesson free of a live lecture.
This step could reduce the time required to do the exercise, as
reading the concept-explaining comments in the code (e.g. Fig.
1) may not be necessary. Moreover, the exercise can be made
easier in various ways, while still serving its objective of
providing a hands-on introduction to the basics of the covered
concepts. For instance, in the faulty load-balancing method, a
comment can be added to indicate that the return value should
be between 0 and 1, an implication that was derived with TA
help in some cases. Similarly, print statements can be added in

this method to identify the return value. Further, the quiz
questions can be omitted.

Conversely, there are many ways to go beyond these basic
concepts. With more TA or automated help, the clues about the
problems in the output, comments, and test results could be
incrementally given, as needed by the trainees. Identification of
which methods are buggy could be the responsibility of the
trainees unless they ask for this information. Thread switching
could be introduced in the middle of the list operation to add an
odd number to the final list, creating additional synchronization
problems. The static shared data could be manipulated in a
synchronized run() instance method, making the trainees
responsible for moving this code to one or more static
synchronized methods. Trainees could be told to use reduction
techniques to avoid the need for synchronized methods. These
additions could be addressed in out-of-class time and should.
not exceed the expected 3 hours.

Even more attractive is to adapt the exercise to support
imperative training in other languages such as C, C++, and
Python. While the concrete realization of it would change in
these adaptations, all key ideas summarized in Section IV except
class decomposition, would apply. Class decomposition would
also apply to other object-oriented languages such as C++ and
Python. The biggest challenge in these adaptations would be
implementing concurrency tests. We built our tests using the
functional testing capabilities of a Java-based testing
infrastructure [5]. Similar infrastructures, developed for other
languages, could support such training in these languages.

This paper provides a basis for pursuing these exciting
directions.

ACKNOWLEDGMENT

Thanks to Mason Laney and Felipe Yanaga for identifying
the trainee problems they addressed and the hints they gave.

REFERENCES

[1] Ghafoor, S., D.W. Brown, and M. Rogers. Integrating Parallel Computing
in Introductory Programming Classes: An Experience and Lesson
Learned. in Proceedings of the Euro-EDUPAR 2017.

[2] Bruce, K.B., A. Danyluk, and T. Murtagh, Introducing Concurrency in
CS 1, in Proc. ACM SIGCSE'10. 2010, ACM.

[3] Dewan, P., S. George, A. Wortas, and J. Do, Techniques and tools for
visually introducing freshmen to object-based thread abstractions. Journal
of Parallel and Distributed Computing, 2021. 157.

[4] Ricken, M. and R. Cartwright. Test-First Java Concurrency for the
Classroom. in Proceedings of the 41st ACM SIGCSE. 2010.

[5] Dewan, P., A. Worley, S. George, F. Yanaga, A. Wortas, J. Juschuk, M.
Rogers, and S.K. Ghafoor, Hands-On, Instructor-Light, Checked and
Tracked Training of Trainers in Java Fork-Join Abstractions., in HiPCW.
2022, IEEE. p. 28-35.

[6] Zanca, N.A., Lecture vs. Lecture-less: A Meta-Analysis from Journal of
Economic Education (1969 to 2016). Journal of Economic Insight, 2017.
43(2).

[7] Adams, J.C., Injecting parallel computing into CS2, in Proceedings of the
45th ACM SIGCSE. 2014, ACM: Atlanta, Georgia, USA. p. 277-282.

[8] Lönnberg, J. Defects in concurrent programming assignments. in
Proceedings of the Ninth Koli Calling International Conference on
Computing Education Research (Koli Calling 2009). 2010.

[9] Bogaerts, S., Hands-on Parallelism with no Prerequisites and Little Time
Using Scratch, in Topics in Parallel and Distributed Computing:
Introducing Concurrency in Undergraduate Courses, S. Prasad, A. Gupta,
A. Rosenberg, A. Sussman, and C. Weems, Editor. 2019,

