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Abstract—Introducing concurrent execution, forking, joining, 

synchronization, and load balancing of Java threads to trainees 

allows them to (a) create arbitrary concurrent algorithms, and (b) 

be exposed to the underpinnings of concurrency concepts. 

However, it requires the sacrifice of some existing concepts in the 

course in which such training is added. To keep this sacrifice low, 

we ambitiously explored if such concepts can be effectively 

introduced and tested in a single class period, which is 

approximately an hour, without a live lecture. Students were 

asked to learn the concurrency concepts by reading, running, 

fixing, and testing an existing concurrent program, and taking a 

quiz. They had varying knowledge of concurrency and Java 

threads but had not implemented concurrent Java programs. Both 

in-person and remote help were offered. They were allowed to 

finish their work after class, within a week.  The vast majority of 

them who started on time finished the coding correctly and gave 

satisfactory quiz answers in ninety minutes. This experience 

suggests that such hands-on training can be usefully added to 

courses for training students and instructors that provide no other 

training in concurrency or training in declarative concepts. Our 

key ideas can be applied to languages other than Java. 
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I. INTRODUCTION 

Because of its importance, researchers are actively pursuing 
a variety of mechanisms for introducing parallel computing in 
undergraduate CS courses. One issue raised by this research is 
the kind of mechanisms used to implement concurrency – 
declarative mechanisms such as OpenMP [1] or procedural 
mechanisms such as the Java thread abstractions [2-5]. 

A declarative mechanism has the advantage that with little 
amount of code, it is possible to implement a variety of useful 
concurrent algorithms. The disadvantages are that it limits the 
range of supported algorithms, and more importantly, abstracts 
away the nature of a thread – an independent execution of a stack 
of procedure calls. This abstraction is particularly detrimental in 
a teaching training workshop [5], as the instructor would not be 
able to explain to the curious students the underpinning of 
concurrency concepts. 

An alternative is to explore a hybrid approach in which both 
kinds of mechanisms are taught [5]. The disadvantage of this 
approach is the time required to cover the additional mechanism. 
This is a problem for both student and teacher training. Student 
training is often done by adding concurrency concepts to an 
existing course, which means sacrificing some existing serial 
concepts. Removing existing topics for adding one concurrency 

mechanism is difficult enough; doing so for two mechanisms is 
likely not practical. A similar problem occurs in a teacher-
training workshop, in which instructors are gathered for a 
limited amount of time, which has to be devoted to both 
technical concepts and organizational and evaluation issues. 

Given this problem, it is attractive to explore techniques to 
teach the basics of the procedural mechanisms in a time period 
that is typically affordable in a student or instructor-training 
course. To explore this idea, this work addresses the following 
specific question: Is it possible to introduce and test concepts in 
execution, forking, joining, synchronization, and load balancing 
of Java threads in one class period (which is approximately an 
hour) with TA help but without any lecture on this topic? If this 
goal is met, then such training can be usefully added to courses 
that provide no other training in concurrency or training in 
declarative concepts. Even if the goal cannot be met in its purest 
form, attempts to meet it can support weaker versions of the goal 
wherein the hands-on exercise usefully supplements recorded 
lectures, overview lectures, or even full lectures on the covered 
topics.  

We believe this goal is ambitious given that we are using the 
class period for not only an introduction of five different 
concurrency topics, but also an evaluation of what the trainees 
learned. Therefore, we are not considering a shorter period such 
as 15 minutes. In a student-training course, such a period can be 
found, for instance, during a class period when a professor is 
away for a conference but has TA help. In a teacher-training 
course, such a period can be found, for instance, during a 
working lunch in which TA help is available. 

In this paper, we describe and evaluate a technique we have 
developed to meet this goal and weaker forms of it. Section 2 
describes previous techniques on which we build and identifies 
the primary key ideas we use to extend this work. Section 3 
identifies additional secondary key ideas that address issues 
raised by our goal and the primary key ideas. Section 4 
describes, in-depth, the hands-on exercise we have developed 
based on these key ideas, and our experience using this exercise 
in a class period when the instructor was away for a meeting. 
Section 5 gives conclusions and future work 

II. RELATED WORK AND PRIMARY KEY IDEAS 

 The idea of lecture-less teaching [6] is not new, and has 
involved the use of recorded videos, textbooks, and tutorials. We 
have incorporated this general idea into the teaching of 
concurrent programming and used hands-on learning as a 
vehicle for implementing our approach. More important, we are 
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considering, not a lecture-less course or module, but a single 
session to achieve all of our learning objectives. 

Hands-on training is the typical vehicle used for teaching 
concurrent programming. However, previous work requires 
multiple class periods and involves some accompanying 
lectures, given just before or during the hands-on training 
sessions [1]. We have extended this idea to provide pure hands-
on training, with no lectures, in one class period, which could be 
during the class or lab meeting time. 

Two forms of hands-on training are possible. In one, trainees 
create new code from scratch [1].  In the other, they modify code 
given to them [5, 7]. Because of our goals of lecture-less, one-
period training, we have adopted the second approach. 

The code modification exercise has previously taken two 
forms. (1) Students uncomment and comment various parts of 
code [5, 7]. (2) Students extend the given code with new 
functionality [5]. Our innovation here is a third approach in 
which students fix bugs in the given code.  

Another issue in code modification is how many different 
problems are given to the students to meet the learning 
objectives. Previous work involved many small problems [5, 7]. 
Given our goal of keeping the training session short, we chose 
to give them the code for a single problem. 

Concurrent programs can be classified into those that (a) 
require concurrency to perform their task such as a program that 
simulates the dining philosopher problem, or (b) use 
concurrency to speed up a task, such as prime number detection, 
that could also be performed sequentially. As we are addressing 
HPC (high-performance computing), like most of the related 
work in concurrency pedagogy, we chose (b) and support a fork-
join problem in which a dispatcher thread divides work among 
multiple worker threads it forks, and then joins them to receive 
their results. 

Hands-on training has the potential to demonstrate the 
execution of multiple threads, and associated problems, in the 
user-interface, thus reducing the need for a more abstract lecture 
to do so. One approach to demonstrating concurrency is to create 
a graphical user interface in which multiple threads create 
animations that appear to execute concurrently [2, 3, 8, 9]. The 
second is to do so textually, in the console [5, 7], by showing 
interleaving of thread outputs that trace intermediate steps and 
final results. The first approach, typically, requires the use of a 
non-standard library or language for creating the user-interface. 
Moreover, HPC applications, in which concurrency is added to 
improve performance and not change the user-interface, are 
inconsistent with animations. On the other hand, the second 
approach has the disadvantage that console text must be 
manually mined by the trainee to identify concurrency. We use 
the second approach but keep the console text small by making 
the amount of work given to each worker thread small. 

It is important that a trainee solution is not hardwired to 
specific data. Like exercises in previous work [1, 5], our 
problem makes the output a function of program arguments and 
random numbers generated by the program.  

An important issue is the evaluation of the trainees’ code. 
There may be none (typically in teacher-training courses), a 

manual evaluation, or automatic testing [5]. Automatic testing 
reduces evaluation time, and is particularly important if the code 
must be evaluated during the training session, as it reduces the 
time for the training session. In addition, when it checks 
functionality [5] rather than performance, it can serve as a 
vehicle to help guide trainees’ work. Therefore, we use 
automatic functionality testing. 

III. SECONDARY KEY IDEAS 

The section above has identified several existing and new 
key ideas used in our work. In this section, we identify 
secondary key ideas to implement our goals and the primary key 
ideas identified above. 

One issue specific to our idea of pure hands-on training is 
how to impart the knowledge needed to use the concurrency 
mechanisms. We leverage the fact that students are given 
working code that uses each of the concurrency mechanisms 
they are learning. We embed the code with comments describing 
how the mechanisms work. In addition, we incorporate, in the 
code, print calls that trace how these mechanisms work.  

In Java, threads execute two kinds of procedures. The main 
thread, created by the Java virtual machine, executes the main() 

method. Other threads, forked by the main thread, execute a 
run() method in a Java Runnable interface. Unlike previous 
work in Java thread training [2-5], we explicitly bring out the 
relationship between these two kinds of methods. 

Another issue specific to our goals is how to make sure a 
small amount of console text is used to demonstrate concurrent 
execution and associated synchronization problems, which 
requires the underlying system to either execute the threads 
concurrently or switch the execution of threads on a single CPU 
frequently. Since students run programs on their own computers, 
they are not guaranteed concurrent execution. Moreover, a CPU 
can execute small problems without doing any thread switching. 
We address this problem by, again, leveraging the fact that they 
are working on code given to them. In this code, we add calls to 
force thread switching. 

Thread switching, by itself, is not sufficient to demonstrate 
synchronization problems as it also requires some unsafe shared 
accesses to occur during problem execution. It is possible and 
more efficient to create fork-join solutions that avoid such 
sharing of global data by using reduction techniques in which 
forked concurrent threads write to local data, which is read by 
the dispatcher thread after it joins them. We deliberately deploy 
the alternative approach in which the forked threads write to a 
shared data structure. We choose a problem that is likely to result 
in sharing even when worker threads perform a small amount of 
work. Finally, to ensure unsafe access, our code simulates 
register loads and stores in Java, and executes calls to trigger 
thread switching between the loads and stores. Thus, we 
deliberately include artificial code patterns in our code for 
illustration purposes. We did not have time, however, to explain 
how these patterns could be improved in a single class period. 

It is typical for concurrency courses to include all of the code 
in the main() procedure [7]. We, on the other hand, use the 
separation of concerns software engineering principle, which 
says that independent tasks should be divided into separate 
classes and procedures. We create five classes: a (1) utility class, 



which contains code the trainee is expected to use but not study 
such as the code to process main arguments; (2) worker class, 
which contains the Java run() method; (3) dispatcher class, 
which contains methods to fork and join methods; (4) repository 
class, which keeps the data shared among the worker and 
dispatcher thread, and (5) main class, which contains only the 
main() method. Each class performs a separate function and can 
be replaced by another class that performs the same function. 
More important, it can be understood on its own. This 
decomposition is problem-independent and can form a design 
pattern for Java fork-join problems, especially those used for 
hands-on training. 

 We put all of these classes in one Java file, for three reasons. 
First, this approach allows easier command-line compilation as 
a single file has to be compiled. Second, we can influence the 
order in which these classes are browsed, assuming trainees read 
them in the order in which they are placed in the file. Finally, a 
trainee can more easily search for prints in a single file. 

Division of code in a class into procedures is driven by the 
principle that (a) each procedure with a bug should contain only 
the context needed to find and fix the bug, (b) each independent 
task in the fork-join model such as fork and join should be 
carried out by a separate method, (c) each thread should execute 
a stack of calls rather than a single call to illustrate it is 
associated with an independent stack, and (d) there should be 
multiple alternate ways of synchronizing methods in calls chains 
to remove race conditions. 

To ensure everyone learns through the exercise, we do 
require TA support to help with it. To ensure that helped students 
learn the underlying concepts, we ask quiz questions that test 
this understanding. We exploit the fact that the output of our 
code traces the underlying algorithm by asking in the quiz what 
effect various modifications have on the output – both the ones 
they made to correct defects and others they could have made.  
This approach results in a new class of concurrency questions – 
output-based - to determine trainees’ understanding of why code 
written by them or given to them works or does not. These 
questions, in turn, imply that the training period should, ideally, 
give them time to do both the coding part and answer quiz 
questions, when the code and output are still fresh in their heads. 

IV. SUMMARY OF KEY IDEAS 

We summarize below the primary and secondary key ideas 
we motivated in the previous sections: 

1. Provide lecture-less training in the following concepts: 
concurrent execution, forking, joining, synchronizing, 
and load balancing of threads. 

2. Let the coding part of this training consist of fixing bugs 
in a single program given to the trainees. 

3. Let the program use concurrency to improve 
performance rather than provide thread-based 
functionality. 

4. Implicitly demonstrate each of the concurrency 
concepts and bugs through a small amount of console 
output. 

5. Provide tests, available during the exercise, for 
incrementally checking the correctness of bug fixing, 
and explicitly identifying symptoms of the bugs in the 
output. 

6. Provide in-line and overview comments to explain the 
concepts needed to perform the tasks. 

7. Demonstrate synchronization bugs in the output by 
using an artificial coding style involving pushing 
worker results to the dispatcher, simulation of register 
load and stores, and thread switching between a load 
and store. 

8. Choose a problem that makes it likely that concurrent 
unsafe writes will be made to shared data. 

9. Provide help to identify and fix bugs, while ensuring 
that output-based and other quiz questions check how 
much the trainees understood about the fixes they were 
helped with. 

10. Use the separation of concerns principle to create the 
following class decomposition: a main class, a 
dispatcher class, a worker class, a shared-repository 
class, and a utility class. 

11. Use the separation of concerns principle in method 
decomposition to ensure that: (a) each thread executes a 
stack of calls rather than a single call, (b) call chains can 
be used to identify alternate approaches for 
synchronizing methods, and (c) a buggy method does 
not contain any code that is irrelevant to its fix. 

V. REALIZING KEY IDEAS IN EXERCISE 

We have developed an exercise that realizes all of these key 
ideas.  The author gave this exercise to students in a class when 
he was away for a meeting.  Because of lack of space, we cannot 
give all aspects of the exercise and its execution. Below, we first 
describe the nature and composition of the class that performed 
the exercise, and their concurrency background. We then 
overview the specific goal of the program with which they 
worked. Next, we focus on the various tasks given to the 
trainees, which included both fixing code and answering quiz 
questions. We present (a) the specifics of the tasks, (b) overall 
statistics about how well the students completed them, (c)  
example answers to quiz questions, and (d) the components of 
the exercise that were designed to successively carry out the 
task. Finally, we present students’ opinions about the exercise. 

A. Nature of Class  

The class was an upper-division course on programming 
language concepts. Its prerequisites included courses on object-
oriented programming, computer organization, data structures, 
and automata theory.  Almost all students were seniors.  

The class had both in-person and Zoom participants, with 
about half the students attending in person. This was true also 
the day the exercise was given.  Before the exercise was given 
to the students, the TA, and two students (who had taken a 
distributed thread-based course from the author) did the coding 
part of it. One of these two students and the TA were available 
for in-person help. The other student was available for remote 
help. No one asked for remote help. 



Forty-two students were enrolled in the course when the 
exercise was given. Forty students, and the TA, submitted the 
result of their coding effort. Thirty-six students, and the TA, 
submitted quiz answers.  

When asked in an earlier class about how much they knew 
concurrency, the ones who spoke, and the TA, said they knew 
almost nothing, which motivated the exercise. One of the survey 
questions asked quiz takers about their previous knowledge of 
concurrency, and the five specific topics: concurrent execution, 
forking, joining, synchronization, and load balancing of threads.  
8% of the quiz takers had no background, 19% generally knew 
about concurrency, 49% had seen the specific topics but not their 
implementation, and 22% had seen implementations of the 
concepts, but not in Java. None of the answers illustrated below 
are from this 22%, who had more than a superficial knowledge 
of the covered concepts. 

All previous classes had live lectures, in which students’ 
class participation was evaluated based on how many questions 
they answered posed through Zoom chats. They were told that 
in the exercise-based class, the quiz grade would be worth 
roughly one day’s Zoom class participation, and the coding part 
about double the points allocated to a Hello World program they 
wrote to get familiar with the testing and other infrastructures 
used in the course. Thus, this exercise was designed to be a low-
stake, high-reward one. They were given a week to make final 
submissions.  

28 students simultaneously opened the assignment Google 
Docs document during the class period (The author was 
monitoring the number remotely). The rest, we assume, used 
other deadlines to postpone this work. This document was 
shared with them 15 minutes before class started. 23 students 
submitted their final version of the tested code within about 90 
minutes of when the 75-minute class started, and eleven of them 
within 50 minutes. Nine of them submitted their final versions 
of the quiz answers within about 90 minutes. Many more had 
made their initial quiz submission within this period. However, 
the author encouraged them to revisit a couple of questions, 
including a survey question, that had not been interpreted 
correctly by many. Had the submission deadline been stricter, 
we believe the vast majority would have finished both the 
coding and quiz tasks within 90 minutes, before the next class 
that day started. 

This was a good trainee sample to test this first-cut effort at 
such an exercise as the class had advanced undergraduate 
students, and the majority of them had not seen the specific 
concepts covered, in theory or practice. This exercise was 
intended for not only training students but also instructors, and 
the seniors were in between the two groups in maturity.  

B. Overview of Exercise 

The assignment write-up and the commented program 
formed the entire exercise. The functional goal of the program 
given to them was to take as an argument an integer N, generate 
an array of N random numbers, find the odd numbers in this 
array, and print a list of the odd numbers as well as the total 
number of odd numbers. The algorithmic goal was to use the 
fork-join model to implement this functionality. 

 The code given to students partly met these goals, and their 
coding task was to fix it. We chose identification of odd numbers 
rather than, say, the more compute-intensive task of finding 
prime numbers, as the likelihood of a random number being odd 
is high, which in turn, makes high the likelihood of concurrent 
accesses to the data structure that keeps track of the results. The 
assignment write-up explained the two program goals. 

Two JUnit tests were written for the exercise, which were 
identical except that they gave different arguments to the main() 
method. Students could run them locally on their computer and 
also on the Gradescope server. They had to make their final code 
submission to Gradescope. The quiz was taken and submitted on 
Gradescope.  

With this background, we are now ready to describe their 
tasks, which involved fixing bugs and answering quiz questions. 

C. Forking Threads 

We start with a quiz question, not because it was their first 
task, but because it checks their understanding of the most 
fundamental concept they needed to perform the other tasks – 
concurrency and thread forking. The question:  

Assume thread p executes the following code, where r is a 
Runnable:  

Thread t = new Thread(r); 

r.run();  

Explain why this code will make thread p execute r.run() 

rather than thread t. If you are unsure why, execute this code 
with the Runnable implemented for you, put a breakpoint on 
run(), and see the stack. How would you change this code to 
make thread t execute r.run()? 

The following sample answer provides an expected 
response: “The stack for the thread t has not been created 
therefore the code will run on the stack for thread p. To make 
the thread t execute r.run() we would need to call t.start() to start 
the thread represented by t.”   

8% of the quiz takers (3 students) skipped this question. 76% 
answered it correctly. The mistakes were in suggesting, as the 

fix (1) t.run() (11%), or (b) t.start() followed by 

r.run() (5%). We believe the first mistake was caused by the 
fact that “running” and “starting” a thread are synonymous terms 
in English; the author has seen many students confuse the two, 
which was the reason for this question. The second mistake was 
probably caused by the students correctly thinking of thread 
forking as a two-step process in which the: (1) thread first starts, 
and (2) then the Runnable runs. They did not realize that the 
thread start() call performs both functions. One student asked 
a TA to explain the concept of concurrency and how it was 
relevant to the exercise, and thus, this help may have contributed 
to the answer to this question. 

The exercise contained at least two components to answer 
this questionThread starting was illustrated in the code given to 
them, which would explain their success in answering the 
second part of the question. For the first part, comments (Fig. 1) 
described main() and run() as the root methods of stacks 
created by Java and the programmer, respectively. 



 

a)   Comments identifying a thread as an independent stack 

 

b) Comments explaining thread start 

Figure 1. Comments explaining threads 

D. Joining Threads 

The students were told that the method in Fig. 2 was buggy 
and asked to fix it. Three students needed help with 
identification of the bug. In the words of the TA, he 
“described/tried to get them to describe what was happening 
with the loop (fork thread 1 -> join thread 1 -> fork thread 2, 
etc.) and then asked them what they thought it should be doing. 
They all replied with fork all -> join all, and were able to figure 
out the problem and solution from there.” 

 

Figure 2. Fork-join bug. 

The traced output, shown in Fig. 3 had clues to identify and 
fix the bug. To determine if the students could see these clues, 
the following quiz question was given: How does the traced 
output of the original buggy version of forkAndJoinThreads() 

differ from that of the corrected one?  

Some answers to the question correctly identified the 
problem with the output; for example: “The thread outputs are 
not intertwined. They appear sequentially instead: The later 
thread begins after the former thread provides output.” Others 
described the problem with the code rather than symptoms in the 
output; for example: “The problem is that different threads in the 
original codes run sequentially instead of concurrently.” Either 
way, they understood the problem with the method. The tests 
further helped them identify the problem, as illustrated by the 
message shown in Fig. 4. The result was that everyone 
successfully fixed the bug. 

E. Load Balancing 

To introduce the load-balancing bug, we created two 
methods, shown in Fig 5 to allocate the number of random 
numbers each thread would process. Students were told that the 
bug was in the second method, fairThreadRemainderSize(), 
which was called by the first method, threadProblemSize().  

This problem caused the most coding difficulties, perhaps 
because of the artificial division of work allocation into two 
methods to create the bug. Each TA fielded questions from four 
students, and one student needed help twice. One student did not 
realize two methods were involved in the computation and they 
needed to use the value of the aThreadIndex argument. Based 
on hints given to them, most of them realized that the return 
value should be between 0 and 1, and then proceeded to fix the 
solution. All but one of the students passed both tests for this 
bug. Recall that these tests generate different number of random 
numbers. One person passed only one test, probably because of 
hardwired return values for one of these tests. 

 

Figure 3. Output identifying fork-join and load-balancing bugs 

 

Figure 4. Test error message identifying fork-join bug 

Except for one student, all of the helped students had made 
at least some attempt at a solution when they asked for help, 
indicating that they had likely identified the bug. As with the 
previous problem, both the output and test results indicated the 
issue. In Fig. 3, line 3 shows that Thread 13 was allocated 
sequence 0-3, and line 9 shows that Thread 14 was allocated 
sequence 3-4. Other lines, not included here, indicate that all 
other threads were allocated one element. Test output, shown in 
Fig. 6, explicitly indicates the problem and implies that the 
problematic method should return a value between 0 and 1. This 
hint could have been explicitly given, but since we had TA help 
available, we decided students would learn more if they figured 
this out themselves. The vast majority did. 

In general, a thread is an independent unit of steps, coded in 

its root method. The main() method is always at the root of 

the thread's stack, and thus, is called the root method of the 

thread. Other methods such as the dispatcher methods get 

pushed on top of the stack when they are called and popped 

when they return. A thread starts when its root method is called 

and terminates when the root method ends. In between the start 

and stop, a stack of calls can be serviced by a thread. This stack 

grows and shrinks, as different methods are called. In this 

example, for instance, some example stack snapshots are:  
ConcurrentOddNumbers.main() 

->OddNumnbersUtil.fillRandomNumbers 

->OddNumbersUtil.generateRandomNumbers 

ConcurrentOddNumbers.main() 

->ConcurrentOddNumbers.fillOddNumbers()  

The call t.start() starts the thread represented by t, that is,  

creates a new stack, and executes the run() method of the  

Runnable instance bound to t  

private static void forkAndJoinThreads () { 
  for (int aThreadIndex = 0;  

   aThreadIndex < threads.length; 
   aThreadIndex++) {    

     forkThread(aThreadIndex); 
     joinThread(aThreadIndex); 
   } 
} 

1. Thread 1->Starting:Thread 13 
2. Thread 1->Stopping execution until the following 

thread terminates:Thread 13 
3. Thread 13->run() called to start processing 

subsequence:0-3 
4. … // Thread 13 output 
5. Thread 13->run() terminates to end processing of 

subsequence:0-3 
6. Thread 1->Resuming execution as the following 

thread has terminated:Thread 13 
7. Thread 1->Starting:Thread 14 
8. Thread 1->Stopping execution until the following 

thread terminates:Thread 14 
9. Thread 14->run() called to start processing 

subsequence 3-4  
10. … // Thread 14 output 
11. Thread 14->run() terminates to end processing of 

subsequence:3-4 
12. Thread 1->Resuming execution as the following 

thread has terminated:Thread 14 

Forked threads do not execute concurrently. 
Between the first and last output of each forked 
thread, there is no other thread output. 



It is possible that some students did not run tests to determine 
the problems; instead, they waited until they were satisfied that 
their program was bug-free, and then ran the tests. Recall that 
these tests could be run locally, as part of a library called 
LocalChecks, or as part of the Gradescope server, into which the 
library and other code was uploaded. Because of constraints of 
the Gradescope server, some error messages produced by the 
tests were suppressed on the server. One of the TAs’ mentioned 
that: “1 student was not running the LocalChecks grader and was 
instead attempting to directly run grading in Gradescope. This 
was fine, but he was not getting any error messages, and so, he 
could not figure out what was wrong with his code. I told him to 
run LocalChecks, and that displayed a nice error message. After 
that, he didn't have any more issues.” The test outputs seemed to 
have helped at least this student.  All error messages shown here 
(Figures 4, 6, and 9) were produced by the LocalChecks library. 

The following quiz question addressed load-balancing: How 
does the traced output of the original buggy version of 
fairThreadRemainderSize() differ from that of the corrected 
one? All students demonstrated their understanding of the 
problem, though many, like the answer below, did not explicitly 
indicate how the output changed: “The original version placed 
the entire remainder on the first thread causing it to take about 
half of the load (in small sample size) while the other threads 
only handled one index. The corrected version only had at most 
a one index difference in the load of each thread.” 

F. Synchronization 

The synchronization mistake was in the method shown in 
Fig. 7, which simulates a register-based increment to a shared 
variable. In this case, students were told how to fix it – they 
simply had to uncomment the synchronized keyword in the first 
line and observe how it influenced the output. This led to one 
student asking if that was all that was involved! 

The intellectual exercise here was to answer three questions 
on this change. The first: In what ways does the traced output of 
the original unsynchronized version of 
incrementTotalOddNumbers() differ from that of the corrected 
synchronized one?  Assume in both cases that 
forkJoinAndThreads() has been corrected. Consider 
differences in the output of both the final and intermediate 
results - in particular, the values loaded and stored.  

Some answers (27%) explained both the change in final and 
intermediate values. The following is an example: “In the 
original unsynchronized version, the traced output would likely 
showcase inconsistencies and race conditions, where multiple 
threads may load the same initial value of 
totalnumberoddnumbers, leading to incorrect increments and 
inaccurate intermediate and final results. However, after I 
corrected the synchronization, it would ensure that the threads 
access the method sequentially, preventing concurrent access 
and modification, which would reflect in the traced output 
showing consistent and correct final values”.  The most common 
answer (41%) explained only the change in final values, while 
some (27%) explained what the problem and solution were, 
without mentioning symptoms in the output. All answers 
demonstrated an understanding of synchronization. One person 
did not answer the question, and one flipped the two cases. 

 
Figure 5. Load-balancing bug 

 
Figure 6. Error message identifying load-balancing bug. 

 
Figure 7. Synchronization bug and solution. 

Fig. 8 contains the output trace showing the problem with 
unsynchronized access. Between the loads and stores are elided 
outputs for thread starts and other events, which may have been 

/** 
  * This method determines how many elements of the  
  * input list, whose size is, aProblemSize, will be 
  * processed by the thread whose index in the  
  * thread array is aThreadIndex. 
  */ 
private static int threadProblemSize( 

int aThreadIndex, int aProblemSize) { 
  // Following is the size if the problem can be 
  // evenly divided among the threads 
  int aMinimumProblemSize =  

aProblemSize / NUM_THREADS;  
  // This is the remaining work 
  int aRemainder = aProblemSize % NUM_THREADS; 
  return aMinimumProblemSize +  
     // calculate out how much of the remaining  
     // work is done by this thread 
     fairThreadRemainderSize( 
        aThreadIndex, aRemainder); 
} 
/** 
  * The goal of this method, as its name suggests,  
  * is to divide aRemainder items fairly among the 
  * available threads, that is, the differences in 
  * the sizes of the portions is as small as 
  * possible. aRemainder is expected to be between  
  * 0 and NUM_THREADS - 1;   
  */ 
private static int fairThreadRemainderSize( 
  int aThreadIndex, int aRemainder) { 
  if (aThreadIndex == 0) { 
    return aRemainder; 
  } else { 
    return 0; 
  } 
} 

Imbalanced thread load: Max thread iterations(4) 
- min thread iterations(1) = 3. It should be <= 1  

 

// synchronized 
static void incrementTotalOddNumbers() {    
  int aRegister = totalNumberOddNumbers;    
  // Simulate load memory to register 
  printProperty("Loaded total number of odd 
numbers", totalNumberOddNumbers);  
  // Before the incremented register is saved to  
  // memory, another concurrent thread may also load 
  // the same value for totalNumberOddNumbers in its    
  // local register variable.    
  aRegister++; // increment register   
  ThreadSupport.sleep(10);   
  // The above call simulates a CPU switching    
  // execution to another thread.   
  totalNumberOddNumbers = aRegister; //save register  
  printProperty("Saved total number of odd numbers", 
totalNumberOddNumbers); 
} 



missed by some of the students who did not mention it. The test 
result in Fig. 9 indicates a mistake in the final result. 

The following question required an answer that could not be 
determined directly by examining the output or test results: 
Suppose we execute the initial buggy version of 
forkJoinAndThreads(). Explain why making 
incrementTotalNumbers() synchronized results in no 
difference in the output. That is, under the condition above, 
whether the method is synchronized or not has no influence on 
the traced output. Feel free to examine the output under these 
conditions to help understand why. 

 
Figure 8. Output demonstrating synchronization bug. 

 
Figure 9. Test message identifying synchronization bug. 

86% of the students gave a completely correct answer. An 

example: “Since each thread was running consecutively rather 

than concurrently, the counter was only being accessed by one 

thread at a time, which is the same as if 

incrementTotalNumbers() was synchronized.” Three gave a 

partly correct answer, and two gave incorrect answers. As 

expected, this was a harder but answerable quiz question. 

The following turned out to be the most difficult question, 
answered correctly by only 46% of the students: The only caller 
of the static addOddNumbers() method is the instance run() 
method, and the only caller of incrementTotalNumbers() is the 
static addOddNumbers(). Suppose addOddNumbers() is not 
synchronized but run() is synchronized. Explain why in this 
scenario it matters whether incrementTotalNumbers() is 
synchronized or not. Look at the explanation of synchronized 
methods in the comments above incrementTotalOddNumbers() 

if you are not clear about the reason. 

Example correct answer: “If run()were to be synchronized, 
it would lock the instance, since run() is an instance method 
and not a static method. This means that other threads in 
unlocked instances can still execute run(), but since 
incrementTotalNumbers() is not also synchronized, it does not 
function in the desired way. Multiple instances would be 
executing the run() method, which would eventually have a call 
to incrementOddNumbers(), and without the synchronization, 
the bugs discussed in Q3 would occur.” 

The overview comments did explain that executing a 
synchronized static and instance method locked the 
synchronized class and instance methods respectively. We 
believe that 54% of the answers did not explain this correctly 
because there was no exercise experiment to illustrate this 
difference, reinforcing the idea of hands-on training. 

G. Survey on Exercise Impact 

The “quiz” contained two post-exercise survey questions. 

The first asked the importance of the new concepts they 
learned through this exercise that they did not know earlier. The 
responses were: 5% not important, 32% moderately important, 
38% very important, and 24% so important that no one should 
graduate without knowing them.  

In their explanations, some seemed to giving the importance 
of the topics rather than what they had learned. Therefore, the 
author clarified the question in a forum post, and asked them to 
edit their answers, if necessary. It is not clear if all who had this 
confusion edited their answers. However, some were clear, as 
illustrated by the following answer: “Moderately important - I've 
known the concepts before, but I found it helpful to see how they 
are implemented in code.”  

 An interesting rationale for a tepid response was: 
“Moderately important, so far throughout all the computer 
courses I've taken, most of the assignments I've done don't 
involve coding threads and runnables. I think the knowledge on 
threads can be useful in regards to efficiency in running 
programs.” An interesting rationale for an enthusiastic response: 
“Because I have been asked about designing a concurrent 
program during an interview. It is important in modern 
industry.” Together, these responses motivate more exposure to 
concurrency concepts in a wide range of CS courses. The overall 
sentiment was very positive, most enthusiastically expressed by 
the following explanation of a “very important” rating: “This 
rocked, thanks.” 

The second survey question asked them if, given a choice, 
they preferred this exercise for these concepts or the kind of 
interactive lecture with Zoom-based Q/A they had experienced 
in this course in earlier classes. In this form of Q/A, the author 
posed a question in Zoom chat, waited for the average student to 
compose an answer, asked students to hit Enter, and then 
discussed the answers. 

 The responses were: 24%, lecture, 22% not sure, 14% little 
difference, and 38% exercise. The reasons for preferring a 
lecture included: It gives better explanations, serves better as an 
introduction, is more visual, promotes more thinking (through 
the Zoom Q/A), allows learning from peer responses, answers 
important conceptual questions more, and does not require time 
after class to finish the work for those who code at a slower pace. 
Some of these responses implied such an exercise was effective 
as long as it was a one-time occurrence, which is what it was 
intended to be. 

The reasons for preferring the exercise included: It is a more 
active form of learning, provides more depth, is tougher, is more 
self-paced, does not require the fast student to wait for the 
average student to provide Zoom answers, does not require 
quick public Zoom responses, and gives reproducible examples.  

A reason given for the response of (a) “little difference” was 
that the exercise was guided like a lecture and thus as effective, 
and (b) “not sure” was the desire to see a hybrid model with a 
video introduction to the exercise. 

The responses to these two questions indicate that, overall, 
the exercise was an attractive alternative when a professor is not 
available for an in-person lecture, and, despite limitations 
perceived by some, made at least a moderate impact on the 
learning of those who had seen some of these concepts before 
and those who had not. 

Thread 14->Loaded total number of odd numbers:0 
… //more output 
Thread 13->Loaded total number of odd numbers:0 
..// more output 
Thread 13->Saved total number of odd numbers:1 
..// more output 
Thread 14->Saved total number of odd numbers:1 

Computed total number of odd numbers 1 != expected total 3  

 



VI. CONCLUSIONS AND FUTURE WORK 

The main contribution of our work is to consider, in-depth, 
the possibility of a lecture-less introduction, in an hour, to 
imperative mechanisms for concurrent execution, forking, 
synchronization, and load balancing of threads. Not all students 
finished all the tasks in an hour, but many did. Students did get 
all the help they needed within the hour, and were able to finish 
the quiz questions on their own later. Finishing later is consistent 
with the fact that in a university course, a student is expected to 
work 3 hours outside class for each hour of class.  The TA, who 
had little knowledge of concurrency, took 15 minutes to read the 
assignment write-up and get the code set up, 15 minutes to look 
through all of the code and associated comments, 20 minutes to 
fix the bugs, and 5 minutes to check the work and submit to 
Gradescope. If the exercise is published ahead of time, then the 
vast majority of trainees may have been able to finish both the 
coding and quiz within an hour. 

The fact that (a) all students submitted correct code, with 
some requiring help, and (b) the vast majority of students 
answered the quiz questions correctly, with some making 
understandable mistakes, indicates that the covered concepts 
were nontrivial and learnable through a pure hands-on exercise. 

The design of a lesson for a live lecture can leave many 
aspects to be resolved at lecture time, as a misstep can be 
corrected during the lecture. The design of a pure hands-on 
session does not have this luxury, even with TA support, as such 
support provides 1-1 help, and thus, does not scale. In 
comparison to papers on lecture design, this work addresses the 
“devil in the details” more thoroughly, and thus provides a more 
comprehensive description of its approach, parts of which could 
be reused in several future endeavors. Its evaluation is equally 
detailed, giving specific problems fielded by the TAs, the hints 
given to students, and the mistakes they made in quiz questions, 
to identify the issues that may need to be addressed by future 
offerings of the exercise. 

It would be useful to investigate the applicability of this 
exercise in a variety of settings, including (a) teacher-training 
workshops, (b) courses addressing OMP programming that are 
taken by students with Java familiarity, and (c) courses on Java-
based object-oriented programming. Often a professor has to be 
at a conference during lecture hours – this exercise is an 
attractive alternative to a lecture given by a guest teacher. We 
will be happy to share the assignment write-up, downloaded 
code, local checks library, and the Gradescope autograder with 
others interested in using this exercise. 

It is even more attractive to consider variations of this 
approach. An introductory YouTube lecture could introduce 
Java threads, while still keeping the lesson free of a live lecture. 
This step could reduce the time required to do the exercise, as 
reading the concept-explaining comments in the code (e.g. Fig. 
1) may not be necessary. Moreover, the exercise can be made 
easier in various ways, while still serving its objective of 
providing a hands-on introduction to the basics of the covered 
concepts. For instance, in the faulty load-balancing method, a 
comment can be added to indicate that the return value should 
be between 0 and 1, an implication that was derived with TA 
help in some cases. Similarly, print statements can be added in 

this method to identify the return value.  Further, the quiz 
questions can be omitted.   

Conversely, there are many ways to go beyond these basic 
concepts. With more TA or automated help, the clues about the 
problems in the output, comments, and test results could be 
incrementally given, as needed by the trainees. Identification of 
which methods are buggy could be the responsibility of the 
trainees unless they ask for this information. Thread switching 
could be introduced in the middle of the list operation to add an 
odd number to the final list, creating additional synchronization 
problems. The static shared data could be manipulated in a 
synchronized run() instance method, making the trainees 
responsible for moving this code to one or more static 
synchronized methods. Trainees could be told to use reduction 
techniques to avoid the need for synchronized methods. These 
additions could be addressed in out-of-class time and should.  
not exceed the expected 3 hours.  

Even more attractive is to adapt the exercise to support 
imperative training in other languages such as C, C++, and 
Python. While the concrete realization of it would change in 
these adaptations, all key ideas summarized in Section IV except 
class decomposition, would apply. Class decomposition would 
also apply to other object-oriented languages such as C++ and 
Python. The biggest challenge in these adaptations would be 
implementing concurrency tests. We built our tests using the 
functional testing capabilities of a Java-based testing 
infrastructure [5]. Similar infrastructures, developed for other 
languages, could support such training in these languages. 

This paper provides a basis for pursuing these exciting 
directions.  
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