
MapReduce modules for undergraduate instruction

Weiwei Ge
Health Informatics

UNC Charlotte
Charlotte, NC

wge@uncc.edu

David J. John
Computer Science

Wake Forest University
Winston-Salem, NC

djj@wfu.edu

Stan J. Thomas
Computer Science

Wake Forest University
Winston-Salem, NC

sjt@wfu.edu

ABSTRACT

Recent curriculum recommendations have underscored the
importance of introducing parallel and distributed comput-
ing (PDC) in the undergraduate curriculum. Implementing
these recommendations is challenging for many computer
science (CS) programs. Our approach has been to develop
PDC modules for use within existing courses. In this poster
we introduce two modules which focus on the MapReduce
paradigm. The first is an introductory module, appropriate
for beginning CS students. The second is an intermediate
module targeted to more advanced students. The modules
will be described by diagrams and pseudocode in the poster
format. Pre- and post-tests to determine the short-term ef-
fectiveness of these modules will be described.

Keywords

MapReduce, instructional modules, undergraduate educa-
tion, Hadoop

1. INTRODUCTION
The ACM/IEEE Joint Curriculum (CS2013) recommen-

dation [2] urges the inclusion of parallel and distributed com-
puting, as well as other timely topics, in the undergraduate
CS major. The challenge for CS programs is to determine
which of these topics will be included, and how they will be
integrated into densely packed curricula.
One approach to addressing the recommendations is to

develop PDC modules that can be integrated into the exist-
ing curriculum. Several groups, CSinParallel [4], LittleFE
[1], and Shodor [7], are spearheading this effort and devel-
oping and distributing instructional modules that focus on
parallel and distributed computing.
Our goal is to integrate PDC modules across the core cur-

riculum. Focusing on core courses guarantees that PDC
topics and concepts will reach every major. To this end we
have previously reported [6] on instructional modules based
on message passing, specifically MPI. In this poster we de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EduHPC-15 Austin, Texas USA
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

scribe two modules based on distributed computing using
the MapReduce paradigm within the Hadoop framework.

For our purposes, a module consists of three components:
a written document, an instructor, and student work. Each
module is designed to be completed in three contact hours
plus student work time. A written document is distributed
to each student that states the goals of the module, intro-
duces the PDC algorithm, including examples, and includes
executable source code.. Student work, from reading and un-
derstanding the written document, to implementing source
code to solve a problem (likely similar to an example in the
written document), is crucial to the goals of the module.

For this poster two MapReduce modules are presented.
The first is designed for a Java-based CS1 course. Here the
emphasis is on understanding the algorithm and its imple-
mentation. The second module is designed for CS students
in an algorithms course. These students will be expected
to implement both a mapper and reducer. In the future,
for CS0 and CS1 level courses, we plan to experiment with
the WebMapReduce interface [5]. WebMapReduce provides
a simple web-based interface for creating and submitting
MapReduce jobs in several programming languages.

2. MAPREDUCE
MapReduce provides a powerful distributed computing ap-

proach to processing large data sets over multiple computers.
The MapReduce paradigm is often implemented within the
Apache Hadoop framework [3], although proprietary imple-
mentations exist.

In our experience, the greatest challenge for students upon
encountering the MapReduce paradigm is often not the map-
reduce data flow itself but rather the details of its implemen-
tation within the Hadoop framework. Most students have
not (knowingly) worked with a distributed file system, and
many students at this level have not worked with serialized
data, two key concepts in the MapReduce environment. An-
other issue for students is the question of what is a ”large”
data set. Simple examples based on data sets appropriate
for processing on a single computer may not convince stu-
dents of the power of the MapReduce paradigm. On the
other hand, processing genuine ”big”data sets often requires
significant time, even in a cluster environment. The combi-
nation of such factors creates a challenging environment for
software development and debugging by students.

3. THE MODULES
The tasks chosen for the two modules both involve text

processing. The first problem asks ”for a large set of docu-

ments, can we produce an inverted index to associate words
with the documents in which they occur?” As will be dis-
cussed in Section 3.1, this problem lends itself readily to
one application of MapReduce. The second problem asks
”for a large set of documents, which of these is most similar
to a known document?”By design, the solution to the second
problem builds upon the solution of the first. All students
working on the second module must review the concepts and
algorithms in the first module. The solution of this problem
uses four applications of MapReduce.

3.1 Introductory Module
Module one is designed to be used in the last quarter

of a Java-based CS1 class. This module requires students
to be able to understand MapReduce and to read its imple-
mentation in Java and perhaps to modify the code provided.
There is no expectation that the students will be able to cre-
ate their own MapReduce implementation after this module
but they should be able to describe the process.
The goals of the module are to develop a basic understand-

ing of the MapReduce paradigm, to contrast MapReduce
with other programming paradigms, to illustrate the map
and reduce processes, and to discuss under what conditions
MapReduce is applicable. The terms key and value are most
important, and care must be taken to insure each student
understands them. The MapReduce paradigm is explained
as the input is read by mappers that produce intermediate
<key, value> pairs which undergo shuffling and sorting; the
resulting <key, value> pairs are the input to the reducers
which produce the final output, as <key, value> pairs.
After illustrating a MapReduce solution for the classic

word frequency example on a large data set, students are
then asked to consider the following problem: the Old Gold
and Black1 has thousands of news articles in their file sys-
tem, and they want to know which files contain important
words. Of course, the students are being asked to develop
an inverted list while omitting stop words. Again, the in-
structor works with the students to create, execute, and un-
derstand a working MapReduce solution.
The most challenging aspect for CS1 students is the abun-

dant use of various specialized Java classes and associated
methods for data serialization and processing in MapReduce.
The instructor must take care to explain the purpose of these
classes without getting mired in the implementation details.

3.2 Intermediate Module
The intermediate module is for students in a more ad-

vanced course focusing on algorithms. It is assumed that
each student is comfortable with and reasonably proficient
using an object oriented programming language (ideally Java).
Furthermore, it is assumed that most have previously com-
pleted the first module in their CS1 course. An assignment
for all students before commencing this module is to review
module one.
The goals of this module are to understand the notion of

document similarity, to understand MapReduce, the under-
stand the benefit of MapReduce, and to be able to write a
MapReduce program in the Hadoop environment. In this
module the problem to solve is to determine which previous
article in the Old Gold and Black is most similar to a targe
article. Cosine similarity is introduced as the mechanism for
measuring document similarity.

1Weekly student newspaper at Wake Forest University

4. EVALUATION
A small set of questions is used with each module as a pre-

and post-test. The purpose of these questions is to ascer-
tain if, in the short-term, the goals of the module are being
achieved. The same questions appear in both instruments,
which gives a straightforward measurement of the impact of
the module.

5. CONCLUSIONS
The MapReduce modules can be challenging for students

and instructors. For the students, an additional topic is be-
ing introduced into a course that already has a large set of
goals. MapReduce, as well as most other PDC paradigms,
requires the students and instructors to incorporate new
and perhaps unfamiliar computing environments, such as
the Hadoop framework, into the course’s computing toolset.
For the instructors, intentionality is required to include a
PDC module. Often when teaching a course there are vari-
ous pressures that demand extra, and unexpected, instruc-
tor and student time. There is a temptation to omit a PDC
module to free up needed time.

For those creating PDC modules, the challenge is to de-
sign compact instruction units that fit naturally into exist-
ing courses. Successful modules will complement the course
content while interjecting PDC content appropriate to the
course and skill level of the students.

Integrating PDC modules into core undergraduate courses
can effectively meet curriculum goals such as those suggested
in CS2013. A tremendous advantage of the modular ap-
proach is the lack of a need of an additional core course;
however, to add modules to an existing core course does re-
quire modification of the course topics.. Of course, module
integration does not preclude separate elective courses focus-
ing on specific aspects of parallel and distributed computing
in depth.

6. REFERENCES
[1] Acme project. LittleFE: Parallel and Cluster

Computing Education On The Move.
http://littlefe.net.

[2] ACM/IEEE-CS Joint Task Force on Computing
Curricula. Computer science curricula 2013. Technical
report, ACM Press and IEEE Computer Society Press,
December 2013. URL:
http://dx.doi.org/10.1145/2534860.

[3] Apache Software Foundation. Welcome to Apache
Hadoop. https://hadoop.apache.org.

[4] CSinParallel. CSinParallel: Parallel Computing in the
Computer Science curriculum.
http://serc.carlton.edu/csinparallel/index.html.

[5] CSinParallel. WebMapReduce. http:
//serc.carleton.edu/csinparallel/ppps/wmr.html.

[6] D. J. John and S. J. Thomas. Parallel and distributed
computing across the computer science curriculum. In
Parallel Distributed Processing Symposium Workshops
(IPDPSW), 2014 IEEE International, pages
1085–1090, May 2014. URL:
http://dx.doi.org/10.1109/IPDPSW.2014.121.

[7] Shodor. SHODOR: a national resource for
computational science education. http://shodor.org.

