
EAPoster: Using BigData for learning about a slice
of parallel computation in several courses

Abstract—An Early Adopter effort for the Parallel and Dis-
tributed Computation (PDC) curriculum emphasizing “big data”
applications is described. The work in progress will use modules
in several courses across the curriculum, starting with the first
term of the first year. Students are asked to learn about and work
with parallelism in distributed operation, using WebMapReduce,
Hadoop, and Spark. Surveys are being developed to see changes
in beliefs about PDC and in conceptual understanding. Content
product will be made available through community repositories
for PDC curriculum work.

Index Terms—computer science education, parallel and dis-
tributed computation education, data science education

I. OVERVIEW

Synopsis : Use “Big Data” parallelism in several modules
in existing courses across the curriculum: lab work culminat-
ing in problem-solving with WebMapReduce in CCI 101 early
in the first year (before a full course in programming), problem
solving with a Hadoop in CS 283, a second year course on
Systems Programming. More customized, efficient processing
with Spark at the advanced undergraduate level in CS 385, a
course on Evolutionary Computing.

Background: Drexel Computer Science has approxi-
mately 150 undergraduate majors per year (700-800 through
the five year undergraduate program of cooperative educa-
tion)t. There is an existing course on PDC on concurrent
programming CS 361 an elective at the advanced undergrad-
uate level which is using Java and Go covering standard
synchronization concepts (threaded programming with shared
variables, race conditions, mutual exclusion, semaphores and
monitors, synchronized message passing, etc.).

Course design and development tasks : Introduce a
slice of PDC to the mainstream through episodic, spiraling
work several courses: 1. Introduction to WebMapReduce com-
putation and concepts in CCI 101, a first year first term
Introduction to Design for Informatics and Computer Science,
taken by all majors, not just CS, in the College of Computing).
2. Lab activities in CS 283, a required course in Systems
Programming for second year students: measuring parallel
performance in WebMapReduce, and porting computation
work from WebMapReduce to Hadoop. This is a shift from
current CS 283 PDC course activities which explore multi-
threaded parallelism via PThreads. 3. Customized computation
using Spark and Mahout machine learning libraries in CS
385 (Evolutionary Computing), an advanced undergraduate
elective, new material for that course.

Rationale for doing only a “slice”: In the crowded
CS curriculum, mandating new topics in the mainstream of
courses must be done with attention to both the intellectual

and departmental-political issues involved altering topics. We
believed that an incremental approach would work better
at persuading our deparmental colleagues and our student
clientele at further PDC into the mainstream. We decided
that it would be more appropriate to first demonstrate PDC
topic integration in courses we had direct control over. We
defer an implementation of a integrated full PDC curriculum
as recommended by ACM 2013 or the IEEE/TCPP model
curricula, after we see how our design choices have worked
out in the initial work.

II. EDUCATIONAL OBJECTIVES

New content: Some of the programming patterns in PDC
emphasize functional programming, which formerly was seen
first as a concept in our third-year programming concepts
course CS 360. Initially we see that the students will need
work on the fundamentals – understanding how sample parallel
computation works and getting them to correctly synthesize
their own. However, a fundamental difference for PDC as con-
trasted with the other content of our curriculum is that much
of it deals with concepts and programming patterns involved
in practical computational efficiency rather than conceptual
notions of efficiency or correctness. Since parallelism is most
relevant where sequentialism does not deliver, it also tends
to involve a much larger computational burden than most
students typically face in introductory programming, where
the complexity and cost of writing a correct program are
typically the main concern. So the mission of parallelism –
better performance – needs to be prominent at the introductory
work, even if proficiency in efficiency is not an objective until
second or later courses.

Relevance: Many of our students decide to go into
careers in applications of computing to business. Familiarizing
them with the opportunities and techniques of Data Science is
consistent with their long-term career intentions. We believe
that early introduction and frequent contact is the way to
establish relevance for our students.

Practical effectiveness: A major distinctive feature of
Drexel is its extensive co-op program. This can attract students
who value coursework with hands-on experience in practical
problem-solving, troubleshooting, and professionally appropri-
ate tools. However, there can be tension between the “get
down to it” mindset and situations where abstraction and
extended conceptual reasoning are helpful. We are attempting
to design our curriculum to showcase or preview the practical
while spending enough time developing students’ ability and



willingness to use the abstraction and high-level thinking
where it would be meaningful.

Impact: We seek to have a long-term permanent effect
on the CS education of our students. Our approach is designed
for repeated hands-on encounters at rising levels of expectation
and sophistication, to better provide retention and transference.
For example, it is planned that the cs283 activities refer
to earlier experience with MapReduce in CCI 101, but to
write stand-alone programs invoking Hadoop using Python,
or Java rather than in Javascript with a web interface to
the computation. The conceptual framework about PDC that
the students were introduced to in CCI 101 will be further
elaborated, and detailed, with greater student responsibility
expected to measure and improve performance through PDC.
Practical usage of parallel algorithms is needed in cs385,
where students often find that a program or program step takes
hours to run, rather than seconds and must rethink their overall
problem solving strategy as a result.

III. PLANS FOR IMPLEMENTATION AND EVALUATION

In Fall 2015 a module with WebMapReduce in CCI 101 saw
pilot usage. In the next two years, we will roll out modules
for the three courses. We describe briefly the pilot version
of the module developed for CCI 101. The hands-on work
for the one-week module is designed to be performed in a lab
classroom with small groups of students in a two hour session.
Instructional staffs’ during the lab is to circulate around the
room to facilitate progress. Pre-lab activities ask the students
to read a JavaScript WebMapReduce tutorial and to watch a
video on it. Students have written programs in JavaScript in
earlier course activity.

The lab materials direct the students through four activities:
1. Students apply “human-powered parallelism” to classifying
playing cards by suit, and to explain why dividing up the task
might get the work done faster than with one person doing all
the work. 2. Each student group is given a WebMapReduce
program and observes what happens using the system’s ex-
ecution visualization. They are asked to discuss: “what does
this program do and how does it do it?” Students construct
their own explanation of what the map and reduce operations
for the example (which counts words from text) do, rather
than recalling the explanation presented in lecture or written
materials. 3. Groups are asked to modify the program from (2)
to compute student grade averages from lists of data. Students
are shown Python coding of a similar problem and asked
to transfer the JavaScript programming for (2) into Python
coding. The switch of language and problem emphasizes the
value of the abstract knowledge of the programming pattern
over the language- or problem-specific programming. 4. Each
group is asked to create/develop on their own the solution to a
another problem, computing enrollment and drop out figures
from Philadelphia School District data. Work is expected to be
turned in online at the end of the lab for grading. Incomplete
submissions can be finished and turned in later in the weekly
lab cycle.

We have developed pre- and post-surveys to evaluate the
impact and reception of the modules on student learning and
beliefs about PDC. Figure 1 shows a few of the questions
in the draft survey which aim to do this. After studying
prior pdc assessments (e.g. [1]) we have developed a few
specific technical questions about the effects of parallelism
and properties and application of map-reduce. Figure 2 shows
a question from a draft of this section of the survey.

IV. DISSEMINATION

We plan to make the content of our curriculum modules and
our survey questionnaires available through the CSInParallel
repository and TCPP repositories when complete.

V. ACKNOWLEDGMENTS

The authors would like to thank Dick Brown and his
CSInParallel colleagues for help with WebMapReduce, and
Sushil Prasad and the staff of TCPP for their assistance in
becoming familiar with the materials available through TDCC.
This work was supported in part by an Early Adopter grant
from TCPP.

REFERENCES

[1] RAGUE, B. Measuring CS1 perceptions of parallelism. In Frontiers in
Education Conference (FIE), 2011 (2011), IEEE, pp. S3E–1.

APPENDIX A: QUESTIONS FROM STUDENT SURVEYS

Fig. 1. Survey excerpt on beliefs about PDC (pre-survey). The five page
survey takes about ten minutes to complete.

Fig. 2. Sample question assessing PDC and MapReduce knowledge and skill.
The seven page survey takes about ten minutes to complete.

http://serc.carleton.edu/csinparallel/modules/index.html
http://serc.carleton.edu/csinparallel/modules/index.html

	Overview
	Educational objectives
	Plans for implementation and evaluation
	Dissemination
	Acknowledgments
	References

