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Abstract—Since multicore processors are now the architectural 
standard and parallel computing is in the core CS curriculum, 
educators must create pedagogical materials and tools to help 
students master parallel abstractions and concepts. This paper 
describes the thread safe graphics library (TSGL), a tool by 
which an educator can add graphics calls to a working 
multithreaded program in order to make visible the underlying 
parallel behavior.  Using TSGL, an instructor (or student) can 
create parallel visualizations that clearly show the parallel 
patterns or techniques that a given program is using, allowing 
students to see the parallel behavior in near real-time as the 
program is running. TSGL includes many examples that 
illustrate its use; this paper presents a representative sample 
that can be used, either in a lecture or a self-paced lab format. 

Computer science; education; graphics; library; multicore; 
multithreading; parallel; thread safe; threads; visualization. 

I.  INTRODUCTION 

The vast majority of central processing units (CPUs) 
being manufactured today have multiple cores, and each of a 
CPU’s core can execute different statements in parallel in 
real-time.  Quad-core CPUs are common, and with sufficient 
budget, one can purchase CPUs with 8, 12, 16, and even 
more cores. 

Traditional sequential programs will not run faster on 
such CPUs, as such programs have a single thread of 
execution.  Indeed, as such programs are run on CPUs with 
more and more cores, sequential programs use the available 
hardware less and less efficiently, as illustrated in Figure 1: 

Available cores Sequential Program 
Hardware Utilization % 

1 100 
2 50 
4 25 
8 12.5 

16 6.25 

Figure 1.  Sequential Program Hardware Utilization % 

 
 
 
 
 
 
 
 

To take advantage of multicore hardware, programs must be 
designed and written as parallel programs, with multiple 
threads of execution.  An effective multithreaded program 
not only uses the underlying hardware efficiently, it also 
runs faster on such hardware. Put differently, its 
performance scales with the number of available cores. 

Since multicore CPUs are the hardware foundation on 
which virtually all of today’s software will run, it follows 
that future software developers need to learn about parallel 
programming in general and multithreaded programming in 
particular. Accordingly, where parallel computing used to be 
an elective topic, it is now a core topic in both the IEEE 
TCPP Curriculum Recommendations [4] and the ACM/IEEE 
CS 2013 Curriculum Recommendations [5]. 

Most future software developers are trained by computer 
science (CS) faculty members.  It is thus the responsibility of 
CS faculty members to ensure that the students they train 
learn about parallelism.   That is, CS faculty members must 
create and use tools and pedagogical materials that will help 
their students understand parallel abstractions and concepts. 

There is an old saying: 
“A picture is worth 1000 words.” 

This saying claims that one well-done graphical presentation 
of information can communicate as effectively as a lengthy 
textual or verbal presentation. Believing this saying to be 
true (especially for visual learners), we began trying to create 
real-time visualizations of multithreaded behavior.  

More precisely, we began searching for a graphics library 
that was thread-safe, meaning it would allow multiple 
threads to write to the screen without producing a race 
condition. Imagine our surprise when we were unable to find 
one anywhere! We examined nearly a dozen graphics 
libraries, and none of them would guarantee thread-safety. 

The problem is that graphics libraries define a data 
structure called a frame buffer, to store the graphical 
information being displayed on the screen.  This frame buffer 
resides in memory, and if two threads try to write graphical 
information to it at the same time, a data race occurs, usually 
causing the multithreaded program to crash. 

Unable to find a graphics library that was thread-safe, we 
decided to create one.  We (rather unimaginatively) named 
our creation the thread-safe graphics library, or TSGL. 

In Section II, we provide an overview of TSGL, and 
Section III presents several examples that illustrate how it 
can be used to let students see multithreaded in near real-
time. We conclude in Section IV with a discussion of the 
principles we use in creating such visualizations. 



II. TSGL 

In this section, we present our design goals for TSGL, 
our design, and some of the implementation details. 

A. TSGL Design Goals 

Our list of objectives for TSGL included: 
• An easy-to-use Canvas class supporting 2D graphics, to 

which multiple threads can safely draw (or read) pixels. 

• A Shape class hierarchy for drawing basic shapes such 
as triangles, rectangles, circles, polygons, and so on. 

• A thread-safe CartesianCanvas class (a subclass of 
Canvas) to easily make Cartesian coordinate systems. 

• A Function class hierarchy for easily plotting functions. 

• The ability to create and display multiple Canvas or 
CartesianCanvas objects, simultaneously or in sequence. 

• Support for reading, writing, displaying, and processing 
PNG, JPEG, and BMP image files; plus safely getting 
and/or setting the individual pixels in such images. 

• Interacting with a Canvas using a mouse or keyboard. 

• Support for each thread to draw in a unique color, so that 
items drawn by different threads can be easily identified. 

• Support for easily delaying a thread’s execution, if 
slowing down a computation is desired. 

• Platform independence and high performance. 

• Operability with C++11, OpenMP, and POSIX threads. 

• HTML-based API documentation like the Java API. 

B. TSGL Design  

To achieve our design goals, we designed classes to 
provide the needed functionality and organized them into a 
class hierarchy, part of which is shown in Figure 2: 

 

Figure 2.  A Partial TSGL Class Structure Diagram 

For example, the Timer class in Figure 2 provides the 
functionality needed to slow down a computation. 

To achieve our goals of platform independence and high 
performance, we chose OpenGL as our graphical foundation. 

 

To handle OpenGL extensions conveniently, we used the 
OpenGL Extensions Wrangler (GLEW) library 
(glew.sourceforge.net).  To interact with a Canvas using a 
mouse or keyboard, we used the GLFW library (glfw.org). 

To ensure operability with C++11, OpenMP, and POSIX 
threads, we wrote TSGL in C++11, and used features of the 
OpenMP and POSIX thread libraries. 

To create HTML-based API documentation, we used the 
Doxygen system (www.doxygen.org). 

C. TSGL Implementation Issues 

One issue we encountered was the frame-buffer race 
condition described in Section I.  To address this problem, 
we used the Shared Queue parallel design pattern [3].  More 
precisely, each TSGL Canvas has its own: 
• shared queue, capable of storing graphical items; and 

• render-thread, responsible for rendering graphical items 
for that Canvas. 

The Canvas class provides a variety of drawing methods, 
including drawPixel(), drawLine(), drawRectangle(), etc. 
Each has parameters appropriate for the object being drawn.  
Each method uses its parameters to define the graphical item 
being drawn, and then deposits that item in the Canvas’s 
shared queue, which is thread-safe. The render-thread 
retrieves the graphical items from the shared queue. 

Initially, we had the render-thread drawing each 
graphical item to OpenGL’s framebuffer. This resolved the 
frame buffer race condition because the render-thread was 
the only thread interacting with the framebuffer.    

However having the render-thread do the drawing proved 
to be a bottleneck, so we revised the render-thread to have it 
convert the graphical items to textures in OpenGL’s 
framebuffer, which the GPU then draws on the screen.  The 
render-thread was still the only thread interacting with the 
framebuffer, but we were able to stress-test TSGL with 1024 
threads all drawing to the same Canvas and maintain a full 
60 frames per second display rate. 

III. EXAMPLES 

In this section, we present examples that show how 
TSGL can be used to see parallel behavior. We first examine 
the Parallel Loop pattern, and then explore the Actor pattern. 

A. The Parallel Loop Pattern 

In many programs, most of the time is spent in loop 
statements.  This behavior is so common, programmers have 
created the 90-10 Rule to describe it: 

“90% of the time is spent in 10% of the code.” 

Using parallelism to speed the processing of an otherwise 
slow loop is one of the parallel design patterns, known as the 
Parallel Loop pattern.  In the simplest form of this pattern, 
the compiler generates code to (a) identify n, the number of 
available threads, (b) divide the iteration-range of the loop 
into n equal-sized chunks, and (c) give each thread one of the 
chunks to perform. 



Explaining this behavior to students can be a challenge, 
even using a parallel education tool like a patternlet [1].  As 
we shall see, TSGL makes it possible for students to see the 
behavior of this pattern in near real-time. 

1) Image Processing 
For students who have grown up with smart phones and 

their built-in cameras, creating a “photoshop effect” to 
process large photographic images can be a motivating way 
to introduce parallelism [2]. TSGL lets us do so and see the 
transformation happening in near real-time. 

To illustrate, Figure 3 presents a large and colorful PNG 
image being displayed using a TSGL Canvas. 

 
Figure 3.  A Colorful PNG Image 

As an example, we will process this image using the 
color inversion transformation.  

There are different algorithms for inverting a color 
image, depending on how the RGB color information is 
stored.  If a color’s RGB components are integers between 0 
and 255, a pseudo-code algorithm might be given as follows: 

Canvas canvas1, canvas2; 

canvas1.loadImage(imageFile); 

for each y in canvas1.getRows() { 

   for each x in canvas1.getColumns() { 

      Pixel p = canvas1.getPixel(x,y); 

      newR = 255 - p.getR(); 

      newG = 255 – p.getG(); 

      newB = 255 - p.getB(); 

      canvas2.setPixel(x, y, newR, newG, newB); 

   } 

} 

If the image being processed is sufficiently large and a single 
thread performs the algorithm, then that thread’s progress 
may be slow enough that it can be seen in real time.  For 
smaller images, TSGL lets us slow the processing as needed 
for the human eye to see the thread’s progression. 

In this algorithm, each pixel’s value is retrieved and 
modified independently of all other pixel values.  Since each 
of the loop’s iterations is independent of the others, we can 
use the Parallel Loop pattern to parallelize this algorithm. 
The following pseudocode shows how we might do so using 
OpenMP’s built-in mechanism for this pattern: 

Canvas canvas1, canvas2; 

canvas1.loadImage(imageFile); 

#pragma omp parallel for 

for each y in canvas1.getRows() { 

   for each x in canvas1.getColumns() { 

      Pixel p = canvas1.getPixel(x,y); 

      newR = 255 - p.getR(); 

      newG = 255 – p.getG(); 

      newB = 255 - p.getB(); 

      canvas2.setPixel(x, y, newR, newG, newB); 

   } 

} 

Suppose that there are 800 rows on our Canvas, and that we 
are running this on a quad-core CPU. Then when execution 
reaches the OpenMP #pragma directive, OpenMP will 
divide the 800 iterations of the outer for loop into four 
chunks (0-199, 200-399, 400-599, and 600-799), and give 
each chunk to a different thread. 

  Figure 4 is a screenshot of four threads inverting the 
image from Figure 3, with the computation about 2/3 done: 

 
Figure 4.  Color Inversion Using Four Threads; In Progress 

The four gray bands in Figure 4 are the portions of the image 
that were unprocessed at the time the screenshot was taken; 
the other areas’ pixels had been inverted. Note that the four 
gray bands are all equal in size, indicating that each thread 
has an equal amount of work remaining.  Put differently, 
each thread has made an equal amount of progress on its 
chunk of the image. TSGL thus lets a student see: (i) what 
work each thread is doing; (ii) when that work is being done, 
in relation to the other threads’ work; and (iii) how fast each 
thread is working, compared to its peers. 

At the end of the loop, we have each thread use a unique 
color to draw a rectangle around its chunk of the image, so 
that its contribution toward the overall computation can be 
clearly seen, as shown in Figure 5. 



 
Figure 5.  Color Inversion Using Four Threads; Finished 

TSGL makes it possible to provide students with a 
sequential, graphical version of any of the common image 
transformations (e.g., color-to-grayscale, sepia tinting, 
resizing, brightening, sharpening, blurring, etc.) and have the 
students time the operation. If they then parallelize the 
operation’s processing loop and rerun the program, they will 
see and experience the difference in speed and behavior 
between the original sequential version and their parallel 
version. By manually varying the number of threads in such 
a parallel program and seeing the result, first-year students 
can develop an intuitive understanding of abstract concepts 
like the Parallel Loop pattern, scalability, and so on. 

2) Numerical Integration  
For CS students who have had integral calculus, 

integration should be a familiar concept, and they may be 
interested in learning how integration can be performed 
computationally.  While there are a variety of methods that 
can be used, one that is easy for students to understand is to 
compute the area between the function’s graph and the x-axis 
for the specified range of x values. A pseudo-code algorithm 
to compute the integral of f(x) from a to b using the 
“rectangle method” might be given as follows: 

heights = 0.0; 

recWidth = (b-a) / NUM_RECTANGLES; 

halfRecWidth = recWidth / 2.0; 

for (i = 0; i < NUM_RECTANGLES; i++) { 

   xLo = a + i * recWidth; 

   xMid = xLo + halfRecWidth; 

   y = f(xMid); 

   heights += y; 

} 

return heights * recWidth; 

For each rectangle, the algorithm’s loop accumulates the 
sum of the rectangles’ “heights” (from the rectangle’s 
midpoint on the x-axis up to the curve) in the variable 
heights.  When the loop is completed, we multiply those 
accumulated “heights” by the width of the rectangle to 
compute the return value. 

To convert this algorithm into a parallel algorithm, we 
can again use OpenMP and the Parallel Loop pattern.  To 
help students see how the algorithm works, we can use 
TSGL to (i) give each thread a color, and (ii) have the thread 
draw its rectangles, as shown in the following pseudo-code: 

heights = 0.0; 

recWidth = (b-a) / NUM_RECTANGLES; 

halfRecWidth = recWidth / 2.0; 

CartesianCanvas canvas(MAX_X, MAX_Y); 

canvas.showAxes(); 

canvas.drawFunction(f); 

#pragma omp parallel reduction(+:heights) 

{ 

 threadID = getThreadID(); 

 Color color = canvas.getMyColor(threadID); 

 #pragma omp for 

 for (i = 0; i < NUM_RECTANGLES; i++) { 

   xLo = a + i * recWidth; 

   xMid = xLo + halfRecWidth; 

   y = f(xMid); 

   canvas.drawRec(xLo, 0, xLo+recWidth, y, color); 

   heights += y; 

 } 

} 

return heights * recWidth; 

That is, we (1) create a CartesianCanvas object that all 
threads will share; (2) tell that canvas to display its axes; and 
(3) tell that canvas to draw the function we are integrating.  
We then (4) direct OpenMP to create a parallel block, 
launching new threads; (5) have each thread retrieve its id 
number; (6) use that id number to give each thread a unique 
color; and (7) direct OpenMP to divide the iterations of the 
for loop among the threads launched in step 4.  Within the 
loop, (8) each thread draws the current rectangle on the 
canvas, using its unique color. 

Figure 6 shows two screenshots of a running TSGL 
implementation of this algorithm, using a quarter of the unit 
circle function for f() and one thread.  In the left shot, 
NUM_RECTANGLES is 10; its value is 100 in the right shot.   

  
Figure 6.  Integration With One Thread: 

(a) 10 Rectangles; (b) 100 Rectangles 

Since a single thread is performing the integration, each 
rectangle is drawn using the same color (red). This program 
lets us specify the number of rectangles and threads from the 
command-line, so Figure 7 shows the same computation 
using 10 rectangles with two vs. four threads: 



   
Figure 7.  Integration With 10 Rectangles: 
(a) Using Two Threads; (b) Using Four Threads 

As before, TSGL lets us see how the Parallel Loop 
pattern works. Figure 7a shows that for two threads, the 
pattern divides the iteration range into two contiguous 
“chunks”; Figure 7b shows that for four threads, it divides 
the range into four such “chunks”. Since each thread is 
coloring its “chunk” using its unique color, we can infer (and 
verify) that for n threads, the pattern divides the iteration 
range into n contiguous “chunks”. It is also easy to see how 
this pattern divides the iterations when they are not evenly 
divisible by the number of threads, as shown in Figure 7b.  

By letting us color-code each thread differently, TSGL 
lets us readily see how a computation’s workload is being 
divided among its threads. 

3) The Mandelbrot Set 
The Mandelbrot set is a well-known fractal figure.  A 

pseudo-code algorithm to draw it might be simplistically 
given as follows: 

Canvas canvas(MAX_X, MAX_Y); 

for (y = 0; y < MAX_Y; y++) { 

   for (x = 0; x < MAX_X; x++) { 

      Color color = mandelColor(x, y); 

      canvas.drawPoint(x, y, color); 

   } 

} 

In this algorithm, we have hidden the computation of 
whether a given (x,y) point is in the Mandelbrot set within a 
mandelColor() function. This function is sufficiently time-
consuming (i.e., it contains another loop) that on many 
computers, one can see the individual rows of the figure 
being drawn. On newer computers, TSGL lets us slow the 
computation sufficiently for this to occur. 

As with the integration example in Section 3.1, the 
Parallel Loop pattern can be used to divide the iterations of 
this algorithm’s outer loop into “chunks” performed by 
different threads.  

However, unlike our previous examples, the time to 
process an (x,y) point in the Mandelbrot figure can vary 
widely, depending on the (x,y) point being computed. TSGL 
lets students see this time-variance; if we use the Parallel 
Loop pattern and 8 threads, we observe behavior like that 
shown in Figures 8 and 9: 

 
Figure 8.  Mandelbrot Using Eight Threads; In Progress 

Like Figure 4, Figure 8 shows the figure in an 
intermediate state.  However, where the threads in Figure 4 
had made equal progress, the threads in Figure 8 have not. 
More precisely, threads 0 and 1 have completed their chunks 
(the top two eighths of the figure), and threads 6 and 7 have 
completed their chunks (the bottom two eighths), but threads 
2, 3, 4, and 5 are still working on their respective eighths, as 
indicated by the four gray bands in the middle of the figure. 

This behavior occurs because points within the 
Mandelbrot set (the black portion of the figure) take longer 
to compute than points outside the set.  Since the threads 
drawing the middle rows have more inside-the-set points to 
compute, it take them longer to complete their “chunks”.  
TSGL’s near real-time drawing can thus let students see the 
effects of non-uniform workloads, which can be used to 
motivate the introduction of other parallel design patterns 
that do a better job of load balancing across the threads. 

When finished, we have each thread draw a colored 
rectangle around the portion of the figure it drew, as shown 
in Figure 9. 

 
Figure 9.  Mandelbrot Using Eight Threads; Finished  



B. The Actor Pattern 

Another parallel design pattern is the Actor pattern, in 
which autonomous actors perform their prescribed behaviors.  
In the remainder of this section, we present an example of 
this pattern: the classic Dining Philosophers problem. 

1) The Dining Philosophers 
In the Dining Philosophers problem, n silent philosophers 

sit around a table, with a large bowl of food in the middle. 
There are n chopsticks on the table, each positioned between 
a pair of philosophers. A philosopher may be thinking, 
hungry, or eating, and may think for an arbitrary length of 
time before becoming hungry, but in order to eat, he or she 
must acquire both of the adjacent chopsticks. As shared 
resources, the chopsticks represent a potential source of race 
conditions. The problem is to devise a strategy that all 
philosophers can follow, that ensures (a) no deadlock occurs, 
(b) no livelock occurs,  (c) that no philosopher starves, and 
(d) that a philosopher who is thinking does not prevent a 
philosopher who is hungry from eating. 

Using the Actor pattern, each philosopher has its own 
thread that performs the strategy for that philosopher. TSGL 
makes it possible to create a visualization to help students 
see a strategy running in near real-time, using color-coding 
to represent a philosopher’s state. Figure 10 provides a 
proof-of-concept visualization, in which the large central 
gray circle represents the table, the five medium-sized circles 
represent the philosophers, and the five small circles 
represent the chopsticks: 

 
Figure 10.  Visualizing the Dining Philosophers (1) 

The separate “Legend” window notes the strategy being used 
and the state each color represents. 

At the moment shown in Figure 10, the bottommost and 
the two topmost philosophers are all hungry (as indicated by 
their red color) but neither has picked up the (black) 
chopstick between them, because the other two (green) 
philosophers are holding the other chopsticks they need.  The 
small brown dots “behind” each philosopher indicate the 
number of times that philosopher has eaten, allowing us to 
see at a glance that no philosopher is starving. 

Figure 11 presents a screen capture of the same program 
later on, showing one of its intermediate states: 

 
Figure 11.  Visualizing the Dining Philosophers (2) 

In Figure 11, no philosopher is eating at the moment. Having 
acquired its left chopstick, the topmost (yellow) philosopher 
is about to eat, as soon as it picks up its right chopstick, 
which is available. Its clockwise (yellow) neighbor also has 
its left chopstick, but is unable to eat until the first 
philosopher releases its right chopstick. Its clockwise (red) 
neighbor is hungry, but is unable to eat as neither of its 
chopsticks are available. Its clockwise (orange) neighbor is 
about to eat, having acquired its right chopstick, and is about 
to pick up its left chopstick. Again, the brown dots “behind” 
each philosopher indicate that no philosopher is starving, and 
that each is eating as often as its peers. 

TSGL can also be used to help students see incorrect 
strategies.  For example, Figure 12 shows a version of the 
program in which the philosophers follow a strategy that 
leads to deadlock: 

 
Figure 12.  Visualizing the Dining Philosophers: Deadlock 

In Figure 12, each philosopher has acquired its right fork and 
is waiting to acquire its left fork, producing a circular wait. 

TSGL thus makes it possible to create visualizations for 
“classic” synchronization problems like the Dining 
Philosophers, Producer-Consumer, Readers-Writers, Sleepy 
Barber, and so on. 



IV. DISCUSSION 

We have seen that TSGL makes it possible to visualize 
parallel computing patterns like the Parallel Loop and the 
Actor patterns.  This raises the question: Can TSGL be used 
to create visualizations that help students understand other 
parallel concepts? 

We believe the answer to this question is “Yes” and that 
the potential of TSGL is mainly limited by our creativity.  
For example, we have begun work on a visualization of the 
Task Queue pattern, as follows: 

a. Open a Canvas whose background is white and whose 
width is proportional with m, the length of the queue; 

b. On the Canvas, draw m black rectangles, each 
representing one of the queue’s tasks, saving a reference 
to each rectangle in a shared queue. 

c. Each time a thread gets a task from the task queue, use 
the shared queue to change the color of the 
corresponding rectangle from black to white. 

At the outset, the Canvas will show m black rectangles, but 
as tasks are removed from the task queue, the corresponding 
rectangles will ‘disappear’ into the white background. The 
result will be a kind of “reverse progress bar” that grows 
shorter as the length of the task queue decreases. 

Alternatively in step (c), a thread could change the color 
of the rectangle to that thread’s unique color.  At the end, the 
distribution of colored rectangles on the Canvas would 
reflect the distribution of tasks among the threads.  

As a second example, we have begun work on a TSGL 
visualization of the parallel Merge Sort algorithm. This and 
similar visualizations will let students see how the sequential 
and parallel versions of an algorithm differ. 

We believe that a key to creating effective visualizations 
is scalability – making certain that a student can change the 
number of threads being used without recompiling, and that 
the visualization’s behavior changes accordingly, in both 
appearance (see Figure 7) and execution-time.  Each of the 
examples described in Section III feature scalability, as this 
allows a student to explore the program’s behavior using 
differing numbers of threads.  TSGL’s near real-time 
graphics let a student actually see a scalable program run 
faster as the number of threads is changed from 1 to 2 to 3 to 
4 to … We have used it in both a lecture setting and a lab 
setting; seeing a program run faster motivates students to 
quantify the speedup and determine precisely how much 
faster the program is running. TSGL appears to have great 
potential as a parallel pedagogical tool. 

V. CONCLUSIONS 

In keeping with the adage “A picture is worth 1000 
words,” we believe that an effective way to teach students 
about parallelism is to show them interactive visualizations 
that illustrate abstract parallel concepts. Such visualizations 
will provide students with memorable mental imagery, and 
the interactivity will let them explore the parallel behavior 
and master the concept. 

To help ourselves and others create such visualizations, 
we have created the thread-safe graphics library (TSGL). 
TSGL is an object-oriented library whereby C++11, POSIX, 
and/or OpenMP threads can safely draw on the same Canvas 
object, and one can see the results in near real-time. 

To illustrate the use of TSGL, we have presented several 
examples, including image processing, numerical 
integration, the Mandelbrot Set, and the Dining Philosophers 
Problem.  We have also described other visualizations on 
which we are currently working; we believe TSGL has great 
potential as a teaching tool. 

For those who would like to try it, the current release of 
TSGL may be freely downloaded from GitHub (see 
https://github.com/Calvin-CS/TSGL) under the GNU Public 
License (v. 3).  It was developed on Ubuntu Linux 14.0.4 
and has been successfully tested on both MacOS X Yosemite 
and Windows 7. The project’s Github site includes 
installation instructions, tutorials on how to use the library, 
and its API. We look forward to seeing new and exciting 
visualizations that others will create using TSGL. 

ACKNOWLEDGMENT 

We wish to thank the National Science Foundation, 
whose grant NSF-DUE #1225739 made TSGL possible. 

REFERENCES 
[1] J. Adams, “Patternlets: A Teaching Tool for Introducing Students to 

Parallelism,” 2015 IEEE International Parallel and Distributed 
Processing Symposium Workshop (IPDPSW-15), Hyderabad, India, 
May 2015. p. 752-759. DOI=10.1109/IPDPSW.2015.18. 

[2] S. Massung and C. Heeren, “Visualizing Parallelism in CS2”, Third 
NSF/TCPP Workshop on Parallel and Distributed Computing 
Education (EduPar-13), May 2013. Accessed 2015-01-10. Online: 
http://grid.cs.gsu.edu/~tcpp/curriculum/sites/default/files/Visualizing
%20Parallelism%20in%20CS%202_0.pdf 

[3] T. Mattson, B. Sanders, B. Massingill. Patterns for Parallel 
Programming, Pearson Education, 2005. 

[4] S. Prasad, et al., “NSF/IEEE-TCPP Curriculum Initiative on Parallel 
and Distributed Computing – Core Topics for Undergraduates,” Dec 
2012. Accessed 2015-01-10. Online: http://grid.cs.gsu.edu/~tcpp/ 
curriculum/sites/default/files/NSF-TCPP-curriculum-version1.pdf 

[5] M. Sahami, et al., “Computer Science Curricula 2013,” Online: 
http://www.acm.org/education/CS2013-final-report.pdf. Accessed 
2016-01-10. DOI=10.1145/2534860. 

 

 

 

 


