
Seeing Multithreaded Behavior Using TSGL

Joel C. Adams
Dept. of Computer Science

Calvin College
Grand Rapids, MI USA

adams@calvin.edu

Patrick A. Crain
Dept. of Computer Science

Calvin College
Grand Rapids, MI USA

patrickacrain@gmail.com

Christopher P. Dilley
Dept. of Computer Science

Calvin College
Grand Rapids, MI USA

cpd5@students.calvin.edu

Abstract—Since multicore processors are now the architectural
standard and parallel computing is in the core CS curriculum,
educators must create pedagogical materials and tools to help
students master parallel abstractions and concepts. This paper
describes the thread safe graphics library (TSGL), a tool by
which an educator can add graphics calls to a working
multithreaded program in order to make visible the underlying
parallel behavior. Using TSGL, an instructor (or student) can
create parallel visualizations that clearly show the parallel
patterns or techniques that a given program is using, allowing
students to see the parallel behavior in near real-time as the
program is running. TSGL includes many examples that
illustrate its use; this paper presents a representative sample
that can be used, either in a lecture or a self-paced lab format.

Computer science; education; graphics; library; multicore;
multithreading; parallel; thread safe; threads; visualization.

I. INTRODUCTION

The vast majority of central processing units (CPUs)
being manufactured today have multiple cores, and each of a
CPU’s core can execute different statements in parallel in
real-time. Quad-core CPUs are common, and with sufficient
budget, one can purchase CPUs with 8, 12, 16, and even
more cores.

Traditional sequential programs will not run faster on
such CPUs, as such programs have a single thread of
execution. Indeed, as such programs are run on CPUs with
more and more cores, sequential programs use the available
hardware less and less efficiently, as illustrated in Figure 1:

Available cores Sequential Program
Hardware Utilization %

1 100
2 50
4 25
8 12.5

16 6.25

Figure 1. Sequential Program Hardware Utilization %

To take advantage of multicore hardware, programs must be
designed and written as parallel programs, with multiple
threads of execution. An effective multithreaded program
not only uses the underlying hardware efficiently, it also
runs faster on such hardware. Put differently, its
performance scales with the number of available cores.

Since multicore CPUs are the hardware foundation on
which virtually all of today’s software will run, it follows
that future software developers need to learn about parallel
programming in general and multithreaded programming in
particular. Accordingly, where parallel computing used to be
an elective topic, it is now a core topic in both the IEEE
TCPP Curriculum Recommendations [4] and the ACM/IEEE
CS 2013 Curriculum Recommendations [5].

Most future software developers are trained by computer
science (CS) faculty members. It is thus the responsibility of
CS faculty members to ensure that the students they train
learn about parallelism. That is, CS faculty members must
create and use tools and pedagogical materials that will help
their students understand parallel abstractions and concepts.

There is an old saying:
“A picture is worth 1000 words.”

This saying claims that one well-done graphical presentation
of information can communicate as effectively as a lengthy
textual or verbal presentation. Believing this saying to be
true (especially for visual learners), we began trying to create
real-time visualizations of multithreaded behavior.

More precisely, we began searching for a graphics library
that was thread-safe, meaning it would allow multiple
threads to write to the screen without producing a race
condition. Imagine our surprise when we were unable to find
one anywhere! We examined nearly a dozen graphics
libraries, and none of them would guarantee thread-safety.

The problem is that graphics libraries define a data
structure called a frame buffer, to store the graphical
information being displayed on the screen. This frame buffer
resides in memory, and if two threads try to write graphical
information to it at the same time, a data race occurs, usually
causing the multithreaded program to crash.

Unable to find a graphics library that was thread-safe, we
decided to create one. We (rather unimaginatively) named
our creation the thread-safe graphics library, or TSGL.

In Section II, we provide an overview of TSGL, and
Section III presents several examples that illustrate how it
can be used to let students see multithreaded in near real-
time. We conclude in Section IV with a discussion of the
principles we use in creating such visualizations.

II. TSGL

In this section, we present our design goals for TSGL,
our design, and some of the implementation details.

A. TSGL Design Goals

Our list of objectives for TSGL included:
• An easy-to-use Canvas class supporting 2D graphics, to

which multiple threads can safely draw (or read) pixels.

• A Shape class hierarchy for drawing basic shapes such
as triangles, rectangles, circles, polygons, and so on.

• A thread-safe CartesianCanvas class (a subclass of
Canvas) to easily make Cartesian coordinate systems.

• A Function class hierarchy for easily plotting functions.

• The ability to create and display multiple Canvas or
CartesianCanvas objects, simultaneously or in sequence.

• Support for reading, writing, displaying, and processing
PNG, JPEG, and BMP image files; plus safely getting
and/or setting the individual pixels in such images.

• Interacting with a Canvas using a mouse or keyboard.

• Support for each thread to draw in a unique color, so that
items drawn by different threads can be easily identified.

• Support for easily delaying a thread’s execution, if
slowing down a computation is desired.

• Platform independence and high performance.

• Operability with C++11, OpenMP, and POSIX threads.

• HTML-based API documentation like the Java API.

B. TSGL Design

To achieve our design goals, we designed classes to
provide the needed functionality and organized them into a
class hierarchy, part of which is shown in Figure 2:

Figure 2. A Partial TSGL Class Structure Diagram

For example, the Timer class in Figure 2 provides the
functionality needed to slow down a computation.

To achieve our goals of platform independence and high
performance, we chose OpenGL as our graphical foundation.

To handle OpenGL extensions conveniently, we used the
OpenGL Extensions Wrangler (GLEW) library
(glew.sourceforge.net). To interact with a Canvas using a
mouse or keyboard, we used the GLFW library (glfw.org).

To ensure operability with C++11, OpenMP, and POSIX
threads, we wrote TSGL in C++11, and used features of the
OpenMP and POSIX thread libraries.

To create HTML-based API documentation, we used the
Doxygen system (www.doxygen.org).

C. TSGL Implementation Issues

One issue we encountered was the frame-buffer race
condition described in Section I. To address this problem,
we used the Shared Queue parallel design pattern [3]. More
precisely, each TSGL Canvas has its own:
• shared queue, capable of storing graphical items; and

• render-thread, responsible for rendering graphical items
for that Canvas.

The Canvas class provides a variety of drawing methods,
including drawPixel(), drawLine(), drawRectangle(), etc.
Each has parameters appropriate for the object being drawn.
Each method uses its parameters to define the graphical item
being drawn, and then deposits that item in the Canvas’s
shared queue, which is thread-safe. The render-thread
retrieves the graphical items from the shared queue.

Initially, we had the render-thread drawing each
graphical item to OpenGL’s framebuffer. This resolved the
frame buffer race condition because the render-thread was
the only thread interacting with the framebuffer.

However having the render-thread do the drawing proved
to be a bottleneck, so we revised the render-thread to have it
convert the graphical items to textures in OpenGL’s
framebuffer, which the GPU then draws on the screen. The
render-thread was still the only thread interacting with the
framebuffer, but we were able to stress-test TSGL with 1024
threads all drawing to the same Canvas and maintain a full
60 frames per second display rate.

III. EXAMPLES

In this section, we present examples that show how
TSGL can be used to see parallel behavior. We first examine
the Parallel Loop pattern, and then explore the Actor pattern.

A. The Parallel Loop Pattern

In many programs, most of the time is spent in loop
statements. This behavior is so common, programmers have
created the 90-10 Rule to describe it:

“90% of the time is spent in 10% of the code.”

Using parallelism to speed the processing of an otherwise
slow loop is one of the parallel design patterns, known as the
Parallel Loop pattern. In the simplest form of this pattern,
the compiler generates code to (a) identify n, the number of
available threads, (b) divide the iteration-range of the loop
into n equal-sized chunks, and (c) give each thread one of the
chunks to perform.

Explaining this behavior to students can be a challenge,
even using a parallel education tool like a patternlet [1]. As
we shall see, TSGL makes it possible for students to see the
behavior of this pattern in near real-time.

1) Image Processing
For students who have grown up with smart phones and

their built-in cameras, creating a “photoshop effect” to
process large photographic images can be a motivating way
to introduce parallelism [2]. TSGL lets us do so and see the
transformation happening in near real-time.

To illustrate, Figure 3 presents a large and colorful PNG
image being displayed using a TSGL Canvas.

Figure 3. A Colorful PNG Image

As an example, we will process this image using the
color inversion transformation.

There are different algorithms for inverting a color
image, depending on how the RGB color information is
stored. If a color’s RGB components are integers between 0
and 255, a pseudo-code algorithm might be given as follows:

Canvas canvas1, canvas2;

canvas1.loadImage(imageFile);

for each y in canvas1.getRows() {

 for each x in canvas1.getColumns() {

 Pixel p = canvas1.getPixel(x,y);

 newR = 255 - p.getR();

 newG = 255 – p.getG();

 newB = 255 - p.getB();

 canvas2.setPixel(x, y, newR, newG, newB);

 }

}

If the image being processed is sufficiently large and a single
thread performs the algorithm, then that thread’s progress
may be slow enough that it can be seen in real time. For
smaller images, TSGL lets us slow the processing as needed
for the human eye to see the thread’s progression.

In this algorithm, each pixel’s value is retrieved and
modified independently of all other pixel values. Since each
of the loop’s iterations is independent of the others, we can
use the Parallel Loop pattern to parallelize this algorithm.
The following pseudocode shows how we might do so using
OpenMP’s built-in mechanism for this pattern:

Canvas canvas1, canvas2;

canvas1.loadImage(imageFile);

#pragma omp parallel for

for each y in canvas1.getRows() {

 for each x in canvas1.getColumns() {

 Pixel p = canvas1.getPixel(x,y);

 newR = 255 - p.getR();

 newG = 255 – p.getG();

 newB = 255 - p.getB();

 canvas2.setPixel(x, y, newR, newG, newB);

 }

}

Suppose that there are 800 rows on our Canvas, and that we
are running this on a quad-core CPU. Then when execution
reaches the OpenMP #pragma directive, OpenMP will
divide the 800 iterations of the outer for loop into four
chunks (0-199, 200-399, 400-599, and 600-799), and give
each chunk to a different thread.

 Figure 4 is a screenshot of four threads inverting the
image from Figure 3, with the computation about 2/3 done:

Figure 4. Color Inversion Using Four Threads; In Progress

The four gray bands in Figure 4 are the portions of the image
that were unprocessed at the time the screenshot was taken;
the other areas’ pixels had been inverted. Note that the four
gray bands are all equal in size, indicating that each thread
has an equal amount of work remaining. Put differently,
each thread has made an equal amount of progress on its
chunk of the image. TSGL thus lets a student see: (i) what
work each thread is doing; (ii) when that work is being done,
in relation to the other threads’ work; and (iii) how fast each
thread is working, compared to its peers.

At the end of the loop, we have each thread use a unique
color to draw a rectangle around its chunk of the image, so
that its contribution toward the overall computation can be
clearly seen, as shown in Figure 5.

Figure 5. Color Inversion Using Four Threads; Finished

TSGL makes it possible to provide students with a
sequential, graphical version of any of the common image
transformations (e.g., color-to-grayscale, sepia tinting,
resizing, brightening, sharpening, blurring, etc.) and have the
students time the operation. If they then parallelize the
operation’s processing loop and rerun the program, they will
see and experience the difference in speed and behavior
between the original sequential version and their parallel
version. By manually varying the number of threads in such
a parallel program and seeing the result, first-year students
can develop an intuitive understanding of abstract concepts
like the Parallel Loop pattern, scalability, and so on.

2) Numerical Integration
For CS students who have had integral calculus,

integration should be a familiar concept, and they may be
interested in learning how integration can be performed
computationally. While there are a variety of methods that
can be used, one that is easy for students to understand is to
compute the area between the function’s graph and the x-axis
for the specified range of x values. A pseudo-code algorithm
to compute the integral of f(x) from a to b using the
“rectangle method” might be given as follows:

heights = 0.0;

recWidth = (b-a) / NUM_RECTANGLES;

halfRecWidth = recWidth / 2.0;

for (i = 0; i < NUM_RECTANGLES; i++) {

 xLo = a + i * recWidth;

 xMid = xLo + halfRecWidth;

 y = f(xMid);

 heights += y;

}

return heights * recWidth;

For each rectangle, the algorithm’s loop accumulates the
sum of the rectangles’ “heights” (from the rectangle’s
midpoint on the x-axis up to the curve) in the variable
heights. When the loop is completed, we multiply those
accumulated “heights” by the width of the rectangle to
compute the return value.

To convert this algorithm into a parallel algorithm, we
can again use OpenMP and the Parallel Loop pattern. To
help students see how the algorithm works, we can use
TSGL to (i) give each thread a color, and (ii) have the thread
draw its rectangles, as shown in the following pseudo-code:

heights = 0.0;

recWidth = (b-a) / NUM_RECTANGLES;

halfRecWidth = recWidth / 2.0;

CartesianCanvas canvas(MAX_X, MAX_Y);

canvas.showAxes();

canvas.drawFunction(f);

#pragma omp parallel reduction(+:heights)

{

 threadID = getThreadID();

 Color color = canvas.getMyColor(threadID);

 #pragma omp for

 for (i = 0; i < NUM_RECTANGLES; i++) {

 xLo = a + i * recWidth;

 xMid = xLo + halfRecWidth;

 y = f(xMid);

 canvas.drawRec(xLo, 0, xLo+recWidth, y, color);

 heights += y;

 }

}

return heights * recWidth;

That is, we (1) create a CartesianCanvas object that all
threads will share; (2) tell that canvas to display its axes; and
(3) tell that canvas to draw the function we are integrating.
We then (4) direct OpenMP to create a parallel block,
launching new threads; (5) have each thread retrieve its id
number; (6) use that id number to give each thread a unique
color; and (7) direct OpenMP to divide the iterations of the
for loop among the threads launched in step 4. Within the
loop, (8) each thread draws the current rectangle on the
canvas, using its unique color.

Figure 6 shows two screenshots of a running TSGL
implementation of this algorithm, using a quarter of the unit
circle function for f() and one thread. In the left shot,
NUM_RECTANGLES is 10; its value is 100 in the right shot.

Figure 6. Integration With One Thread:

(a) 10 Rectangles; (b) 100 Rectangles

Since a single thread is performing the integration, each
rectangle is drawn using the same color (red). This program
lets us specify the number of rectangles and threads from the
command-line, so Figure 7 shows the same computation
using 10 rectangles with two vs. four threads:

Figure 7. Integration With 10 Rectangles:
(a) Using Two Threads; (b) Using Four Threads

As before, TSGL lets us see how the Parallel Loop
pattern works. Figure 7a shows that for two threads, the
pattern divides the iteration range into two contiguous
“chunks”; Figure 7b shows that for four threads, it divides
the range into four such “chunks”. Since each thread is
coloring its “chunk” using its unique color, we can infer (and
verify) that for n threads, the pattern divides the iteration
range into n contiguous “chunks”. It is also easy to see how
this pattern divides the iterations when they are not evenly
divisible by the number of threads, as shown in Figure 7b.

By letting us color-code each thread differently, TSGL
lets us readily see how a computation’s workload is being
divided among its threads.

3) The Mandelbrot Set
The Mandelbrot set is a well-known fractal figure. A

pseudo-code algorithm to draw it might be simplistically
given as follows:

Canvas canvas(MAX_X, MAX_Y);

for (y = 0; y < MAX_Y; y++) {

 for (x = 0; x < MAX_X; x++) {

 Color color = mandelColor(x, y);

 canvas.drawPoint(x, y, color);

 }

}

In this algorithm, we have hidden the computation of
whether a given (x,y) point is in the Mandelbrot set within a
mandelColor() function. This function is sufficiently time-
consuming (i.e., it contains another loop) that on many
computers, one can see the individual rows of the figure
being drawn. On newer computers, TSGL lets us slow the
computation sufficiently for this to occur.

As with the integration example in Section 3.1, the
Parallel Loop pattern can be used to divide the iterations of
this algorithm’s outer loop into “chunks” performed by
different threads.

However, unlike our previous examples, the time to
process an (x,y) point in the Mandelbrot figure can vary
widely, depending on the (x,y) point being computed. TSGL
lets students see this time-variance; if we use the Parallel
Loop pattern and 8 threads, we observe behavior like that
shown in Figures 8 and 9:

Figure 8. Mandelbrot Using Eight Threads; In Progress

Like Figure 4, Figure 8 shows the figure in an
intermediate state. However, where the threads in Figure 4
had made equal progress, the threads in Figure 8 have not.
More precisely, threads 0 and 1 have completed their chunks
(the top two eighths of the figure), and threads 6 and 7 have
completed their chunks (the bottom two eighths), but threads
2, 3, 4, and 5 are still working on their respective eighths, as
indicated by the four gray bands in the middle of the figure.

This behavior occurs because points within the
Mandelbrot set (the black portion of the figure) take longer
to compute than points outside the set. Since the threads
drawing the middle rows have more inside-the-set points to
compute, it take them longer to complete their “chunks”.
TSGL’s near real-time drawing can thus let students see the
effects of non-uniform workloads, which can be used to
motivate the introduction of other parallel design patterns
that do a better job of load balancing across the threads.

When finished, we have each thread draw a colored
rectangle around the portion of the figure it drew, as shown
in Figure 9.

Figure 9. Mandelbrot Using Eight Threads; Finished

B. The Actor Pattern

Another parallel design pattern is the Actor pattern, in
which autonomous actors perform their prescribed behaviors.
In the remainder of this section, we present an example of
this pattern: the classic Dining Philosophers problem.

1) The Dining Philosophers
In the Dining Philosophers problem, n silent philosophers

sit around a table, with a large bowl of food in the middle.
There are n chopsticks on the table, each positioned between
a pair of philosophers. A philosopher may be thinking,
hungry, or eating, and may think for an arbitrary length of
time before becoming hungry, but in order to eat, he or she
must acquire both of the adjacent chopsticks. As shared
resources, the chopsticks represent a potential source of race
conditions. The problem is to devise a strategy that all
philosophers can follow, that ensures (a) no deadlock occurs,
(b) no livelock occurs, (c) that no philosopher starves, and
(d) that a philosopher who is thinking does not prevent a
philosopher who is hungry from eating.

Using the Actor pattern, each philosopher has its own
thread that performs the strategy for that philosopher. TSGL
makes it possible to create a visualization to help students
see a strategy running in near real-time, using color-coding
to represent a philosopher’s state. Figure 10 provides a
proof-of-concept visualization, in which the large central
gray circle represents the table, the five medium-sized circles
represent the philosophers, and the five small circles
represent the chopsticks:

Figure 10. Visualizing the Dining Philosophers (1)

The separate “Legend” window notes the strategy being used
and the state each color represents.

At the moment shown in Figure 10, the bottommost and
the two topmost philosophers are all hungry (as indicated by
their red color) but neither has picked up the (black)
chopstick between them, because the other two (green)
philosophers are holding the other chopsticks they need. The
small brown dots “behind” each philosopher indicate the
number of times that philosopher has eaten, allowing us to
see at a glance that no philosopher is starving.

Figure 11 presents a screen capture of the same program
later on, showing one of its intermediate states:

Figure 11. Visualizing the Dining Philosophers (2)

In Figure 11, no philosopher is eating at the moment. Having
acquired its left chopstick, the topmost (yellow) philosopher
is about to eat, as soon as it picks up its right chopstick,
which is available. Its clockwise (yellow) neighbor also has
its left chopstick, but is unable to eat until the first
philosopher releases its right chopstick. Its clockwise (red)
neighbor is hungry, but is unable to eat as neither of its
chopsticks are available. Its clockwise (orange) neighbor is
about to eat, having acquired its right chopstick, and is about
to pick up its left chopstick. Again, the brown dots “behind”
each philosopher indicate that no philosopher is starving, and
that each is eating as often as its peers.

TSGL can also be used to help students see incorrect
strategies. For example, Figure 12 shows a version of the
program in which the philosophers follow a strategy that
leads to deadlock:

Figure 12. Visualizing the Dining Philosophers: Deadlock

In Figure 12, each philosopher has acquired its right fork and
is waiting to acquire its left fork, producing a circular wait.

TSGL thus makes it possible to create visualizations for
“classic” synchronization problems like the Dining
Philosophers, Producer-Consumer, Readers-Writers, Sleepy
Barber, and so on.

IV. DISCUSSION

We have seen that TSGL makes it possible to visualize
parallel computing patterns like the Parallel Loop and the
Actor patterns. This raises the question: Can TSGL be used
to create visualizations that help students understand other
parallel concepts?

We believe the answer to this question is “Yes” and that
the potential of TSGL is mainly limited by our creativity.
For example, we have begun work on a visualization of the
Task Queue pattern, as follows:

a. Open a Canvas whose background is white and whose
width is proportional with m, the length of the queue;

b. On the Canvas, draw m black rectangles, each
representing one of the queue’s tasks, saving a reference
to each rectangle in a shared queue.

c. Each time a thread gets a task from the task queue, use
the shared queue to change the color of the
corresponding rectangle from black to white.

At the outset, the Canvas will show m black rectangles, but
as tasks are removed from the task queue, the corresponding
rectangles will ‘disappear’ into the white background. The
result will be a kind of “reverse progress bar” that grows
shorter as the length of the task queue decreases.

Alternatively in step (c), a thread could change the color
of the rectangle to that thread’s unique color. At the end, the
distribution of colored rectangles on the Canvas would
reflect the distribution of tasks among the threads.

As a second example, we have begun work on a TSGL
visualization of the parallel Merge Sort algorithm. This and
similar visualizations will let students see how the sequential
and parallel versions of an algorithm differ.

We believe that a key to creating effective visualizations
is scalability – making certain that a student can change the
number of threads being used without recompiling, and that
the visualization’s behavior changes accordingly, in both
appearance (see Figure 7) and execution-time. Each of the
examples described in Section III feature scalability, as this
allows a student to explore the program’s behavior using
differing numbers of threads. TSGL’s near real-time
graphics let a student actually see a scalable program run
faster as the number of threads is changed from 1 to 2 to 3 to
4 to … We have used it in both a lecture setting and a lab
setting; seeing a program run faster motivates students to
quantify the speedup and determine precisely how much
faster the program is running. TSGL appears to have great
potential as a parallel pedagogical tool.

V. CONCLUSIONS

In keeping with the adage “A picture is worth 1000
words,” we believe that an effective way to teach students
about parallelism is to show them interactive visualizations
that illustrate abstract parallel concepts. Such visualizations
will provide students with memorable mental imagery, and
the interactivity will let them explore the parallel behavior
and master the concept.

To help ourselves and others create such visualizations,
we have created the thread-safe graphics library (TSGL).
TSGL is an object-oriented library whereby C++11, POSIX,
and/or OpenMP threads can safely draw on the same Canvas
object, and one can see the results in near real-time.

To illustrate the use of TSGL, we have presented several
examples, including image processing, numerical
integration, the Mandelbrot Set, and the Dining Philosophers
Problem. We have also described other visualizations on
which we are currently working; we believe TSGL has great
potential as a teaching tool.

For those who would like to try it, the current release of
TSGL may be freely downloaded from GitHub (see
https://github.com/Calvin-CS/TSGL) under the GNU Public
License (v. 3). It was developed on Ubuntu Linux 14.0.4
and has been successfully tested on both MacOS X Yosemite
and Windows 7. The project’s Github site includes
installation instructions, tutorials on how to use the library,
and its API. We look forward to seeing new and exciting
visualizations that others will create using TSGL.

ACKNOWLEDGMENT

We wish to thank the National Science Foundation,
whose grant NSF-DUE #1225739 made TSGL possible.

REFERENCES
[1] J. Adams, “Patternlets: A Teaching Tool for Introducing Students to

Parallelism,” 2015 IEEE International Parallel and Distributed
Processing Symposium Workshop (IPDPSW-15), Hyderabad, India,
May 2015. p. 752-759. DOI=10.1109/IPDPSW.2015.18.

[2] S. Massung and C. Heeren, “Visualizing Parallelism in CS2”, Third
NSF/TCPP Workshop on Parallel and Distributed Computing
Education (EduPar-13), May 2013. Accessed 2015-01-10. Online:
http://grid.cs.gsu.edu/~tcpp/curriculum/sites/default/files/Visualizing
%20Parallelism%20in%20CS%202_0.pdf

[3] T. Mattson, B. Sanders, B. Massingill. Patterns for Parallel
Programming, Pearson Education, 2005.

[4] S. Prasad, et al., “NSF/IEEE-TCPP Curriculum Initiative on Parallel
and Distributed Computing – Core Topics for Undergraduates,” Dec
2012. Accessed 2015-01-10. Online: http://grid.cs.gsu.edu/~tcpp/
curriculum/sites/default/files/NSF-TCPP-curriculum-version1.pdf

[5] M. Sahami, et al., “Computer Science Curricula 2013,” Online:
http://www.acm.org/education/CS2013-final-report.pdf. Accessed
2016-01-10. DOI=10.1145/2534860.

