Developing IEEE-TCPP Parallel/Distributed Curriculum and NSF CyberTraining Program

Sushil K Prasad

National Science Foundation
Georgia State University
Former Chair, IEEE Technical Committee on Parallel Processing (TCPP)

EduHiPC-18, Bangalore, India

TCPP Curriculum Initiative:
http://www.cs.gsu.edu/~tcpp/curriculum/
Outline

• IEEE-TCPP Curriculum
 – Why this curriculum initiative and what are the opportunities for the audience?
 – Key Activities and Milestones
 • ACM/IEEE 2013 CS Curriculum Taskforce
 – provided direct link to us for rigorous coverage
 – How was the curriculum formulated?
 – How is it getting evaluated?
 – Current Activities

• NSF CyberTraining Program
 – Computational and Data-driven Science for All
 – Goals; Communities of Concern
 – Award Framework
Who are we?

- Chtchelkanova, Almadena - NSF
- Dehne, Frank - University of Carleton, Canada
- Gouda, Mohamed - University of Texas, Austin, NSF
- Gupta, Anshul - IBM T.J. Watson Research Center
- JaJa, Joseph - University of Maryland
- Kant, Krishna – George Mason University
- La Salle, Anita - NSF
- LeBlanc, Richard, Seattle University
- Lumsdaine, Andrew - Indiana University
- Padua, David - University of Illinois at Urbana-Champaign
- Parashar, Manish - Rutgers
- Prasad, Sushil - Georgia State University
- Prasanna, Viktor - University of Southern California
- Robert, Yves - INRIA, France
- Rosenberg, Arnold - Northeastern
- Sahni, Sartaj - University of Florida
- Shirazi, Behrooz - Washington State University
- Sussman, Alan - University of Maryland
- Weems, Chip, University of Massachusetts
- Wu, Jie - Temple University
Why now?

• Computing Landscape has changed
 – Mass marketing of multi-cores
 – General purpose GPUs even in laptops (and handhelds)

• A student with even a Bachelors in Computer Science (CS) or Computer Engineering (CE) must acquire skill sets to develop parallel software
 – No longer instruction in parallel and distributed computing primarily for research or high-end specialized computing
 – Industry is filling the curriculum gap with their preferred hardware/software platforms and “training” curriculums as alternatives with an eye toward mass market.
How was the curriculum formulated?

Why would they come?

Field of Dreams (1989): "If you build it, he will come"
Curriculum Planning Workshops at DC (Feb-10) and at Atlanta (April-10)

- Goals
 - setup mechanism and processes which would provide periodic curricular guidelines
 - employ the mechanism to develop sample curriculums

- Agenda:
 - Review and Scope
 - Formulate Mechanism and Processes
 - Preliminary Curriculum Planning
 - Core Curriculum
 - Introductory and advanced courses
 - Impact Assessment and Evaluation Plan

Main Outcomes

- Priority: Core curriculum revision at undergraduate level
- Preliminary Core Curriculum Topics
 - Sample Intro and Advanced Course Curriculums
Weekly Tele-Meetings on Core Curriculum (May-Dec’10; Aug’11-Feb’12)

Goal: Propose core curriculum for CS/CS graduates

- **Every individual** CS/CE undergraduate must be at the proposed level of knowledge as a result of their *required* coursework

Process: For each topic and subtopic

1. Assign **Bloom’s classification**
 - K = Know the term (basic literacy)
 - C = Comprehend so as to paraphrase/illustrate
 - A = Apply it in some way (requires operational command)

1. Write **learning outcomes**
2. Identify core CS/CE courses impacted
3. Assign number of hours
4. Write suggestions for “how to teach”
TCPP Curriculum Example

4 Curriculum Areas
- Architecture, Programming, Algorithms, Cross-cutting

<table>
<thead>
<tr>
<th>Algorithms Topics</th>
<th>Bloom #</th>
<th>Course</th>
<th>Learning Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Algorithmic problems</td>
<td></td>
<td></td>
<td>The important thing here is to emphasize the parallel/distributed aspects of the topic</td>
</tr>
<tr>
<td>Communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>broadcast</td>
<td>C/A</td>
<td>Data Struc/Algo</td>
<td>represents method of exchanging information - one-to-all broadcast (by recursive doubling)</td>
</tr>
<tr>
<td>multicast</td>
<td>K/C</td>
<td>Data Struc/Algo</td>
<td>Illustrate macro-communications on rings, 2D-grids and trees</td>
</tr>
<tr>
<td>scatter/gather</td>
<td>C/A</td>
<td>Data Structures/Algorithms</td>
<td></td>
</tr>
<tr>
<td>gossip</td>
<td>N</td>
<td></td>
<td>Not in core</td>
</tr>
<tr>
<td>Asynchrony</td>
<td>K</td>
<td>CS2</td>
<td>asynchrony as exhibited on a distributed platform, existence of race conditions</td>
</tr>
<tr>
<td>Synchronization</td>
<td>K</td>
<td>CS2, Data Struc/Algo</td>
<td>aware of methods of controlling race condition,</td>
</tr>
<tr>
<td>Sorting</td>
<td>C</td>
<td>CS2, Data Struc/Algo</td>
<td>parallel merge sort,</td>
</tr>
<tr>
<td>Selection</td>
<td>K</td>
<td>CS2, Data Struc/Algo</td>
<td>min/max, know that selection can be accomplished by sorting</td>
</tr>
</tbody>
</table>
How is the Curriculum being evaluated?

Early Adopter Program
EduPar/EduHPC/Euro-EduPar Workshop series
Early Adopter Program

• Over 100 institutions worldwide
 – Spring-11: 16 institutions; Fall’11: 18;
 – Spring-12: 21; Fall-12: 25 institutions, Fall-13: 25 institutions,
 Fall-14: 25, Fall-15: 13
 – Most from US (4 year to research institutions, one high school)
 – Some from South America, a few from Europe, fewer from
 Asia (India, China, Indonesia, Singapore), Middle East

• Next competition: Deadline Feb 12, 2019
 – NSF/Intel funded Cash Award/Stipend up to $1500-5000/proposal
 – Which course(s), topics, evaluation plan?

• Instructors for core CS/CS courses such as CS1/2, Systems, Data
 Structures and Algorithms – department-wide multi-course multi-semester
 adoption preferred
 – Elective courses; graduate courses
Edu* Workshop Series

- **EduPar-11** at Alaska, IPDPS-2011
 - Receive feedback from the Adopters
 - Stimulate discussion of curricular and other educational issues.
- **EduPar-12** at Shanghai, IPDPS-2012
 - A regular satellite workshop of IPDPS
- **EduPar-13** in Boston + **EduHPC** Workshop at SC-13 + BOF at SIGCSE-14
- **EduHPC-14** @ SC-14, Nov – New Orleans; **EduHPC-15** in Austin, **EduHPC-16**, **EduHPC-17**, **EduHPC-18** in Dallas
- **EduPar-15** @IPDPS, May, India; **EduPar-16**, Chicago, **EduPar-17** in Orlando; **EduPar-18** in Vancouver
- **EduHiPC 2018 @ HiPC in Banglore** – for India and the region
 - Monday, Dec 2018
- **EduPar-19** @ IPDPS in Rio in May’19
 - Deadline Jan 18, 2019
CDER Book Project

• Lack of suitable textbooks to integrate PDC topics into the core courses
 – CS1, CS2, Systems, and Data Structures and Algorithms

• **Part I - For instructors:** Basic Concepts and References on what and how to teach

• **Part 2: For students:** Supplemental teaching material for core courses

• 9 chapters
 – over 27K chapter downloads – free downloads

• **2nd Volume – Published Nov’19**

 – **Vol 3** – Early Adopter course and topic exemplars and accompanying resources
<table>
<thead>
<tr>
<th>New Aspects</th>
<th>Areas</th>
<th>Architecture</th>
<th>Algorithms</th>
<th>Programming</th>
</tr>
</thead>
<tbody>
<tr>
<td>Area Lead/ Aspect Lead</td>
<td>Chip Weems</td>
<td>Arnold Rosenberg</td>
<td>Alan Sussman</td>
<td></td>
</tr>
<tr>
<td>Exemplars</td>
<td>Sushil Prasad</td>
<td>Karen Karavanic, Eric Freudenthal</td>
<td>Erik Saule, Duane Merril, David Bunde</td>
<td>David Brown, Eric Freudenthal</td>
</tr>
<tr>
<td>Distributed</td>
<td>Vaidyanathan Ramachandran</td>
<td>Vaidyanathan Ramachandran, Manish Parashar</td>
<td>Vaidyanathan Ramachandran, Costas Busch, Denis Trystram</td>
<td>Alan Sussman, Chi Shen</td>
</tr>
<tr>
<td>Big Data</td>
<td>Trilce Estrada</td>
<td>Craig Stunkel</td>
<td>Cynthia Phillips, Debzani Deb</td>
<td></td>
</tr>
<tr>
<td>Energy</td>
<td>Krishna Kant, Craig Stunkel</td>
<td>Craig Stunkel, Karen Karavanic</td>
<td>Denis Trystram</td>
<td>John Dougherty</td>
</tr>
<tr>
<td>Crosscutting</td>
<td>Sheikh Ghafoor Arny Rosenberg Anshul Gupta</td>
<td>Craig Stunkel, Eric Freudenthal</td>
<td>Robert Robey, Martina Barnas</td>
<td>Sheikh Gafoor, Eric Freudenthal</td>
</tr>
</tbody>
</table>
Sponsorship Acknowledgements

- NSF
 - NSF/TCPP Curriculum Initiative
 - Early adopter competitions (stipend, travel)
 - EduPar/EduHPC workshop series
 - CRI-ADDO CDER (2012-15)

- Intel
 - international early adopter institutions (stipend, travel)

- nVIDIA
 - GPU cards to all the 50+ early adopters from Spring'11, Fall'11 and Spring'12 rounds.

- IEEE TCPP, IBM
 - Keynotes in the past
Innovations in NSF Advanced Cyberinfrastructure Research Workforce Development and Education Programs

Office of Advanced Cyberinfrastructure (OAC)
Computer and Information Science & Engineering (CISE)
National Science Foundation

Sushil K Prasad,
Questions: sprasad@nsf.gov
Dec 2018
NSF Office of Advanced Cyberinfrastructure

Program Staff

Manish Parashar
Office Director

Amy Friedlander
Deputy Office Director

Bill Miller
Science Advisor

Bob Chadduck
Computing

Amy Walton
Data

Vipin Chaudhary
Software

Micah Beck
Networking & Cybersecurity

Sushil Prasad
Learning & Workforce Development

Beth Plale
Science Advisor

Ed Walker*

Stefan Robila*

TBD*

Kevin Thompson

Alejandro Suarez
Cooperative Agreements

Julie Stalhut
AAAS S&T Policy Fellow

* IPA Appointment

Join NSF/OAC: Multiple Program Officer openings
My Journey as a NSF Program Director

• What does ACI/OAC do – OAC’s Mission?
 – Advanced CI – cyberinfrastructure funding in HW, SW, Data, Networking, Security
 – Forward looking research and education, but…

• Status of research and education programs in OAC
 – Dwindling when arrived in 2015 – participation in CAREER, CRII, REU site; NRT
 – Multidisciplinary, use-inspired focus

• My IEEE TCPP experience
 – Massive Outreach
 – Connecting with diverse, multidisciplinary research communities

=> OAC CAREER: Twice as many proposals in 2016; Thrice in 2017
OAC Research and Education Scope

• OAC mission: 2. Forwarding looking research and education
 – Multidisciplinary, use-inspired focus
• Continual Internal discussions within OAC and NSF
• Studied current and past programs
• Workshops; NSCI, NAS study
• Converged on a key gap in training/education => CyberTraining Program
 – Computational and data-driven science for all
 – 2 competitions in 2017 and 2018
 • extraordinary response and growth
Communities of Concern

CI Contributors

Cyber Scientists

to develop new capabilities

CI Professionals

Professional Staff
to deploy & support new capabilities

CI Users

Area Scientists
to exploit new capabilities

Prasad/EduHiPC-18
Overarching and Solicitation Goals

- **Overarching Goal:** prepare, nurture and grow scientific *research* workforce
- **Goal 1:** ensure *broad adoption* of CI tools, methods, and resources, *OR*
- **Goal 2:** integrate skills into educational *curriculum/instructional material fabric* in
 - advanced cyberinfrastructure (CI) +
 - computational and data science and engineering (CDS&E)
 - spanning undergraduate and graduate courses.
- **Innovative, scalable training, education, and curricular** programs addressing
 - targeting one or both of the solicitation goals
 - Emerging needs and Unresolved bottlenecks
 - Undergrads, grad students, instructors, faculty, research CI professionals
FY 19: Award Framework

• Excellent community response
 • 40% additional submissions in 2nd round!
 • About 25 awards made in FY 16 and FY17

• Three project classes:
 • \textit{Pilot}: Exploratory activities
 • $300K, 2 yrs
 • \textit{Implementation}: Broadly accessible to community
 • \textit{Small}: $500K, 4 yrs
 • \textit{Medium}: foster a community,
 • $1M, 4 yrs
 • \textit{Large-scale Project Conceptualization}:
 • Planning grants for potential future institute-like CyberTraining projects
 • $500k, 2 yrs

• No separate tracks, still 3 communities of concerns
 • CI Professionals, CI Contributors, and CI Users

• Next Deadline:
 • Feb 6, 2019
 • Webinar on Nov 26
Conclusion and Opportunities

• Need to inculcate “parallel thinking” to all
• Core Curriculum Revision is a community effort
 – Curriculum Initiative Website:
 – http://www.cs.gsu.edu/~tcpp/curriculum/
• Early Adopter competition
 – Deadline Feb 12, 2019
• EduPar-19 @ IPDPS in Rio in May’19
 – Paper/Peachy Assignment/Poster Deadline Jan 18, 2019
• CDER Book Vol 3
 – Course and topic exemplars and accompanying resources
• For US-based: NSF CyberTraining Solicitation
 – Next Deadline: Feb 6, 2019
Developing IEEE-TCPP Parallel/Distributed Curriculum and NSF CyberTraining Program

Sushil K Prasad
National Science Foundation
Georgia State University
Former Chair, IEEE Technical Committee on Parallel Processing (TCPP)

EduHiPC-18, Bangalore, India

TCPP Curriculum Initiative:
http://www.cs.gsu.edu/~tcpp/curriculum/